-
1.
公开(公告)号:US20240222485A1
公开(公告)日:2024-07-04
申请号:US18091209
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Mahmut Sami Kavrik , Tristan Tronic , Chelsey Dorow , Kevin O?Brien , Uygar Avci , Carl H. Naylor , Chia-Ching Lin , Dominique Adams , Matthew Metz , Ande Kitamura , Scott B. Clendenning
IPC: H01L29/775 , H01L27/088 , H01L29/06 , H01L29/26 , H01L29/423 , H01L29/66
CPC classification number: H01L29/775 , H01L27/088 , H01L29/0673 , H01L29/26 , H01L29/42392 , H01L29/66969
Abstract: A transistor structure includes a stack of nanoribbons coupling source and drain terminals. The nanoribbons may each include a pair of crystalline interface layers and a channel layer between the interface layers. The channel layers may be a molecular monolayer, including a metal and a chalcogen, with a thickness of less than 1 nm. The channel layers may be substantially monocrystalline, and the interface layers may be lattice matched to the channel layers. The channel layers may be epitaxially grown over the lattice-matched interface layers. The crystalline interface layers may be grown over sacrificial layers when forming the stack of nanoribbons.
-
2.
公开(公告)号:US20220199619A1
公开(公告)日:2022-06-23
申请号:US17133208
申请日:2020-12-23
Applicant: Intel Corporation
Inventor: Ashish Verma Penumatcha , Seung Hoon Sung , Jack Kavalieros , Uygar Avci , Tristan Tronic , Shriram Shivaraman , Devin Merrill , Tobias Brown-Heft , Kirby Maxey , Matthew Metz , Ian Young
Abstract: A complementary metal oxide semiconductor (CMOS) transistor includes a first transistor with a first gate dielectric layer above a first channel, where the first gate dielectric layer includes Hf1-xZxO2, where 0.33
-
公开(公告)号:US20240304543A1
公开(公告)日:2024-09-12
申请号:US18668038
申请日:2024-05-17
Applicant: Intel Corporation
Inventor: Kevin Lin , Noriyuki Sato , Tristan Tronic , Michael Christenson , Christopher Jezewski , Jiun-Ruey Chen , James M. Blackwell , Matthew Metz , Miriam Reshotko , Nafees Kabir , Jeffery Bielefeld , Manish Chandhok , Hui Jae Yoo , Elijah Karpov , Carl Naylor , Ramanan Chebiam
IPC: H01L23/522 , H01L21/3213 , H01L21/768 , H01L23/528 , H01L23/532
CPC classification number: H01L23/5226 , H01L21/32139 , H01L21/76819 , H01L21/7682 , H01L21/76843 , H01L23/5283 , H01L23/53209
Abstract: IC interconnect structures including subtractively patterned features. Feature ends may be defined through multiple patterning of multiple cap materials for reduced misregistration. Subtractively patterned features may be lines integrated with damascene vias or with subtractively patterned vias, or may be vias integrated with damascene lines or with subtractively patterned lines. Subtractively patterned vias may be deposited as part of a planar metal layer and defined currently with interconnect lines. Subtractively patterned features may be integrated with air gap isolation structures. Subtractively patterned features may be include a barrier material on the bottom, top, or sidewall. A bottom barrier of a subtractively patterned features may be deposited with an area selective technique to be absent from an underlying interconnect feature. A barrier of a subtractively patterned feature may comprise graphene or a chalcogenide of a metal in the feature or in a seed layer.
-
公开(公告)号:US20240114696A1
公开(公告)日:2024-04-04
申请号:US17957603
申请日:2022-09-30
Applicant: Intel Corporation
Inventor: Christopher Neumann , Cory Weinstein , Nazila Haratipour , Brian Doyle , Sou-Chi Chang , Tristan Tronic , Shriram Shivaraman , Uygar Avci
IPC: H01L27/11507 , H01L27/11514
CPC classification number: H01L27/11507 , H01L27/11514
Abstract: Multiple-ferroelectric capacitor structures in memory devices, including in integrated circuit devices, and techniques for forming the structures. Insulators separating individual outer plates in a ferroelectric capacitor array are supported between wider portions of a shared, inner plate. Wider portions of an inner plate may be formed in lateral recesses between insulating layers. Ferroelectric material may be deposited over the inner plate between insulating layers after removing sacrificial layers. An etch-stop layer may protect the inner plate when sacrificial layers are removed. An etch-stop or interface layer may remain over the inner plate adjacent insulators.
-
公开(公告)号:US11158711B2
公开(公告)日:2021-10-26
申请号:US16645405
申请日:2017-12-27
Applicant: Intel Corporation
Inventor: Abhishek A. Sharma , Van H. Le , Li Huey Tan , Tristan Tronic , Benjamin Chu-Kung
IPC: H01L29/417 , H01L29/66 , H01L29/786
Abstract: Embodiments herein describe techniques for a thin-film transistor (TFT), which may include a gate electrode above a substrate and a channel layer above the gate electrode. A source electrode may be above the channel layer and adjacent to a source area of the channel layer, and a drain electrode may be above the channel layer and adjacent to a drain area of the channel layer. A passivation layer may be above the channel layer and between the source electrode and the drain electrode, and a top dielectric layer may be above the gate electrode, the channel layer, the source electrode, the drain electrode, and the passivation layer. In addition, an air gap may be above the passivation layer and below the top dielectric layer, and between the source electrode and the drain electrode. Other embodiments may be described and/or claimed.
-
6.
公开(公告)号:US20240222482A1
公开(公告)日:2024-07-04
申请号:US18091192
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Kevin P. O'Brien , Rachel Steinhardt , Chelsey Dorow , Carl H. Naylor , Kirby Maxey , Sudarat Lee , Ashish Verma Penumatcha , Uygar Avci , Scott Clendenning , Tristan Tronic , Mahmut Sami Kavrik , Ande Kitamura
IPC: H01L29/76 , H01L21/02 , H01L29/06 , H01L29/24 , H01L29/423 , H01L29/66 , H01L29/775
CPC classification number: H01L29/7606 , H01L21/02568 , H01L21/02603 , H01L29/0673 , H01L29/24 , H01L29/42392 , H01L29/66969 , H01L29/775
Abstract: Devices, transistor structures, systems, and techniques are described herein related to field effect transistors having a doping layer on metal chalcogenide nanoribbons outside of the channel region. The doping layer is a metal oxide that shifts the electrical characteristics of the nanoribbons and is formed by depositing a metal and oxidizing the metal by exposure to ozone and ultraviolet light.
-
公开(公告)号:US20240222441A1
公开(公告)日:2024-07-04
申请号:US18091197
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Mahmut Sami Kavrik , Carl Naylor , Chelsey Dorow , Chia-Ching Lin , Dominique Adams , Kevin O'Brien , Matthew Metz , Scott Clendenning , Sudarat Lee , Tristan Tronic , Uygar Avci
IPC: H01L29/40 , H01L21/04 , H01L21/28 , H01L21/3213 , H01L21/44 , H01L29/423 , H01L29/45 , H01L29/786
CPC classification number: H01L29/401 , H01L21/043 , H01L21/044 , H01L21/28264 , H01L21/32136 , H01L21/44 , H01L29/42384 , H01L29/45 , H01L29/454 , H01L29/78648 , H01L29/4908
Abstract: Devices, transistor structures, systems, and techniques, are described herein related to selective gate oxide formation on 2D materials for transistor devices. A transistor structure includes a gate dielectric structure on a 2D semiconductor material layer, and source and drain structures in contact with the gate dielectric structure and on the 2D semiconductor material layer. The source and drain structures include a metal material or metal nitride material and the gate dielectric structure includes an oxide of the metal material or metal nitride material.
-
公开(公告)号:US12027458B2
公开(公告)日:2024-07-02
申请号:US17841551
申请日:2022-06-15
Applicant: Intel Corporation
Inventor: Kevin Lin , Noriyuki Sato , Tristan Tronic , Michael Christenson , Christopher Jezewski , Jiun-Ruey Chen , James M. Blackwell , Matthew Metz , Miriam Reshotko , Nafees Kabir , Jeffery Bielefeld , Manish Chandhok , Hui Jae Yoo , Elijah Karpov , Carl Naylor , Ramanan Chebiam
IPC: H01L23/522 , H01L21/3213 , H01L21/768 , H01L23/528 , H01L23/532
CPC classification number: H01L23/5226 , H01L21/32139 , H01L21/76819 , H01L21/7682 , H01L21/76843 , H01L23/5283 , H01L23/53209
Abstract: IC interconnect structures including subtractively patterned features. Feature ends may be defined through multiple patterning of multiple cap materials for reduced misregistration. Subtractively patterned features may be lines integrated with damascene vias or with subtractively patterned vias, or may be vias integrated with damascene lines or with subtractively patterned lines. Subtractively patterned vias may be deposited as part of a planar metal layer and defined currently with interconnect lines. Subtractively patterned features may be integrated with air gap isolation structures. Subtractively patterned features may be include a barrier material on the bottom, top, or sidewall. A bottom barrier of a subtractively patterned features may be deposited with an area selective technique to be absent from an underlying interconnect feature. A barrier of a subtractively patterned feature may comprise graphene or a chalcogenide of a metal in the feature or in a seed layer.
-
公开(公告)号:US11300885B2
公开(公告)日:2022-04-12
申请号:US16045253
申请日:2018-07-25
Applicant: Intel Corporation
Inventor: Robert Bristol , Guojing Zhang , Tristan Tronic , John Magana , Chang Ju Choi , Arvind Sundaramurthy , Richard Schenker
Abstract: Embodiments described herein comprise extreme ultraviolet (EUV) reticles and methods of forming EUV reticles. In an embodiment, the reticle may comprise a substrate and a mirror layer over the substrate. In an embodiment, the mirror layer comprises a plurality of alternating first mirror layers and second mirror layers. In an embodiment, a phase-shift layer is formed over the mirror layer. In an embodiment, openings for printable features and openings for non-printable features are formed into the phase-shift layer. In an embodiment, the non-printable features have a dimension that is smaller than a dimension of the printable features.
-
公开(公告)号:US20250006433A1
公开(公告)日:2025-01-02
申请号:US18216479
申请日:2023-06-29
Applicant: Intel Corporation
Inventor: Sarah Atanasov , Elijah Karpov , Nazila Haratipour , Sou-Chi Chang , Tristan Tronic
Abstract: Apparatuses, memory systems, capacitor structures, and techniques related to ferroelectric capacitors having a hafnium-zirconium oxide film between the electrodes of the capacitor are discussed. The hafnium-zirconium oxide film is thin and has large crystallite grains. The thin large grain hafnium-zirconium oxide film having large grains is formed by depositing a thick hafnium-zirconium oxide film and annealing the thick hafnium-zirconium oxide film to establish the large grain size, and etching back the hafnium-zirconium oxide film to the desired thickness for deployment in the ferroelectric capacitor.
-
-
-
-
-
-
-
-
-