Abstract:
An ablation system includes an ablation tool configured to generate an energy beam to ablate an energy-sensitive material formed on at least one embedded feature of a workpiece. The ablation tool selects an initial fluence and an initial pulse rate of the energy beam to ablate a first portion of the energy-sensitive layer. The ablation tool further reduces at least one of the initial fluence and the initial pulse rate of the energy beam to ablate a second remaining portion of the energy-sensitive layer such that the embedded feature is exposed without being damaged or deformed.
Abstract:
A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
Abstract:
A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
Abstract:
A fill head apparatus includes at least one chamber for holding a fluid. The chamber has an outlet for expelling the fluid. A vacuum device has an inlet for a suction device adjacent to the fluid outlet. A plurality of flexible and resilient sealing devices contact a top surface of a workpiece. The sealing devices are positioned on opposing sides of the chamber outlet and on opposing sides of the vacuum device inlet, such that the sealing devices create at least a partial seal around a cavity defined by the workpiece and the cavity is beneath both the chamber outlet and the vacuum outlet.
Abstract:
A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
Abstract:
A laser etching system includes a laser source configured to generate a plurality of laser pulses during an etching pass. A workpiece is aligned with respect to the laser source. The workpiece includes an etching material that is etched in response to receiving the plurality of laser pulses. A mask reticle is interposed between the laser source and the workpiece. The mask reticle includes at least one mask pattern configured to regulate the fluence or a number of laser pulses realized by the workpiece such that a plurality of features having different depths with respect to one another are etched in the etching material.
Abstract:
A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
Abstract:
A fill head apparatus includes at least one chamber for holding a fluid. The chamber has an outlet for expelling the fluid. A vacuum device has an inlet for a suction device adjacent to the fluid outlet. A plurality of flexible and resilient sealing devices contact a top surface of a workpiece. The sealing devices are positioned on opposing sides of the chamber outlet and on opposing sides of the vacuum device inlet, such that the sealing devices create at least a partial seal around a cavity defined by the workpiece and the cavity is beneath both the chamber outlet and the vacuum outlet.
Abstract:
A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.