Abstract:
A physical unclonable function (PUF) device includes a ring oscillator, a plurality of band-pass filters, a demultiplexer, and a latch. The ring oscillator generates a frequency signal. Each passive band-pass filter performs filtering on the frequency signal to pass the frequency signal or block the frequency signal. The demultiplexer receives a set of challenge bits and delivers the frequency signal to a selected passive band-pass filter among the plurality of passive band-passed filters based on the challenge bit. The latch outputs a response bit in response to the filtering performed by the selected passive band-pass filter.
Abstract:
A method includes forming a metallic interconnect structure on a semiconductor substrate where the metallic interconnect structure comprises a plurality of metal lines with adjacent metal lines separated by a gap therebetween. The method further includes selectively depositing a first low-k dielectric material onto the semiconductor substrate and onto exposed surfaces of the metal lines of the metal interconnect structure to form a barrier on at least the metal lines. The barrier is configured to minimize oxidation and diffusion of metal of the metal lines. The method also includes depositing a flowable second low-k dielectric material onto the semiconductor structure to form a dielectric layer encapsulating the barrier and the metallic interconnect structure.
Abstract:
A phase change memory structure including a bottom electrode; a top electrode; a first phase change material between the bottom electrode and the top electrode; a first dielectric surrounding the first phase change material; a second dielectric surrounding the top electrode, the second dielectric having selective adhesion to a metal as compared to the first phase change material; a first metal feature contacting the bottom electrode; and a second metal feature contacting the top electrode.
Abstract:
A method includes forming a metallic interconnect structure on a semiconductor substrate where the metallic interconnect structure comprises a plurality of metal lines with adjacent metal lines separated by a gap therebetween. The method further includes selectively depositing a first low-k dielectric material onto the semiconductor substrate and onto exposed surfaces of the metal lines of the metallic interconnect structure to form a barrier on at least the metal lines. The barrier is configured to minimize oxidation and diffusion of metal of the metal lines. The method also includes depositing a flowable second low-k dielectric material onto the semiconductor substrate to form a dielectric layer encapsulating the barrier and the metallic interconnect structure.
Abstract:
Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.
Abstract:
Semiconductor devices and methods for forming semiconductor devices include opening at least one contact via through a sacrificial material down to contacts. Sides of the at least one contact via are lined by selectively depositing a barrier on the sacrificial material, the barrier extending along sidewalls of the at least one contact via from a top surface of the sacrificial material down to a bottom surface of the sacrificial material proximal to the contacts such that the contacts remain exposed. A conductive material is deposited in the at least one contact via down to the contacts to form stacked contacts having the hard mask on sides thereof. The sacrificial material is removed.
Abstract:
Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.
Abstract:
A porous low k dielectric material containing atoms of at least Si, C, N and H (C and/or O may also be present) is used to provide an interconnect structure having reduced BEOL capacitance and resistance. The porous low k dielectric material is used as an interconnect dielectric material in which at least one interconnect metal-containing structure is embedded therein. The porous low k dielectric material has metal diffusion barrier properties due to the presence of nitrogen as an elemental constituent of the porous low k dielectric material. As such, the porous low k dielectric material can eliminate the need of a diffusion barrier liner, or reduce the thickness of the diffusion barrier liner that is typically formed between an interconnect dielectric material and the embedded interconnect metal structure.
Abstract:
Embodiments of the present invention provide hydrogen-free dielectric films and methods of fabrication. A hydrogen-free precursor, such as tetraisocyanatosilane, and hydrogen-free reactants, such as nitrogen, oxygen (O2/O3) and nitrous oxide are used with chemical vapor deposition processes (PECVD, thermal CVD, SACVD, HDP CVD, and PE and Thermal ALD) to create hydrogen-free dielectric films. In some embodiments, there are multilayer dielectric films with sublayers of various materials such as silicon oxide, silicon nitride, and silicon oxynitride. In embodiments, the hydrogen-free reactants may include Tetra Isocyanato Silane, along with a hydrogen-free gas including, but not limited to, N2, O2, O3, N2O, CO2, CO and a combination thereof of these H-Free gases. Plasma may be used to enhance the reaction between the TICS and the other H-free gasses. The plasma may be controlled during film deposition to achieve variable density within each sublayer of the films.
Abstract:
Embodiments of the present invention are directed to techniques for providing a gate cut critical dimension (CD) shrink and active gate defect healing using selective deposition. The selective silicon on silicon deposition described herein effectively shrinks the gate cut CD to below lithographic limits and repairs any neighboring active gate damage resulting from a processing window misalignment by refilling the inadvertently removed sacrificial material. In a non-limiting embodiment of the invention, a sacrificial gate is formed over a shallow trench isolation region. A portion of the sacrificial gate is removed to expose a surface of the shallow trench isolation region. A semiconductor material is selectively deposited on exposed sidewalls of the sacrificial gate. A gate cut dielectric is formed on a portion of the shallow trench isolation between sidewalls of the semiconductor material.