摘要:
Solder compositions for semiconductor fabrication are provided that include silver (Ag) of 3.0 wt. % to 4.0 wt. %, copper (Cu) of 0.75 wt. % to 1.0 wt. %, nickel (Ni) of 0.08 wt. % to 1.0 wt. %, and tin (Sn) of 94 wt. % to 96.17 wt. %, or that include bismuth (Bi) of 0.3 wt. % to 2.0 wt. % in place of a portion of the tin (Sn) in the solder composition; and, semiconductor packages are also provided that use the solder compositions for bonding one or more components of the semiconductor packages to each other.
摘要:
Microelectronic devices include a conductive via that extends into a substrate face and that also protrudes beyond the substrate face to define a conductive via end surface and a conductive via sidewall that extends from the end surface towards the substrate face. A conductive cap is provided on the end surface, the conductive cap including a conductive cap body that extends across the end surface and a flange that extends from the conductive cap body along the conductive via sidewall towards the substrate face. Related fabrication methods are also described.
摘要:
Disclosed therein are a heat pump system for a vehicle and a method of controlling the heat pump system, which variably controls only a compressor if the number of revolutions of the compressor is less than the upper limit of the number of the maximum revolutions of the compressor and operates an electric heater only when the number of revolutions of the compressor reaches the upper limit of the number of the maximum revolutions of the compressor in order to satisfy a target discharge temperature in a heat pump mode, thereby preventing that convergence of an air discharge temperature of the interior of the vehicle is deteriorated or becomes unstable when the compressor and the electric heater are variably controlled at the same time in order to satisfy the target discharge temperature.
摘要:
Microelectronic devices include a conductive via that extends into a substrate face and that also protrudes beyond the substrate face to define a conductive via end surface and a conductive via sidewall that extends from the end surface towards the substrate face. A conductive cap is provided on the end surface, the conductive cap including a conductive cap body that extends across the end surface and a flange that extends from the conductive cap body along the conductive via sidewall towards the substrate face. Related fabrication methods are also described.