摘要:
The present invention relates to a method for forming the LCP composite having LCP fibers dispersed in the matrix resin even if the LCP content may be smaller than the lower limit of the fiber formable range.The method is characterized in that a resin composite reinforced by the LCP fiber in a mixture ratio beyond the fiber formable range or the preferred fiber formable range by means of an extrusion or injection molding of a resin mixture containing a liquid crystal resin composite extruded in the fiber formable range or the preferred fiber formable range.
摘要:
A method for remanufacturing a composite resin having high tensile strength and high rigidity into a remanufactured molded product having the same tensile strength and rigidity which includes the steps of: providing a molded product of a composite resin of thermoplastic resin and liquid crystal polymer having a crystal transition point higher than a minimum moldable temperature of the thermoplastic resin; crushing the composite resin into particles or pieces; heating the particles or pieces at a temperature higher than the transition temperature of the liquid crystal polymer to obtain a molten composite resin by using an injection forming apparatus; extruding the molten composite resin at a temperature higher than the transition temperature of the liquid crystal polymer to obtain a moldable composite material of a sheet or strand form; and forming the moldable composite material into a molded product in a given shape at a temperature lower than the transition temperature of the liquid crystal polymer.
摘要:
Certain embodiments provide an infrared imaging device including: an SOI structure that is placed at a distance from a substrate, and includes: heat-sensitive diodes that detect infrared rays and convert the infrared rays into heat; and STI regions that separate the heat-sensitive diodes from one another; an interlayer insulating film that is stacked on the SOI structure; and supporting legs that are connected to the heat-sensitive diodes and vertical signal lines provided in outer peripheral regions of the heat-sensitive diodes. Each of the supporting legs includes: an interconnect unit that transmit signals to the vertical signal lines; and interlayer insulating layers that sandwich the interconnect unit, each bottom side of the interlayer insulating layers being located in a higher position than the SOI structure.
摘要:
An image sensor includes a semiconductor substrate; first pixels laid out above cavities provided within the semiconductor substrate, the first pixels converting thermal energy generated by incident light into an electric signal; supporting parts connected between the first pixels and the semiconductor substrate, the supporting parts supporting the first pixels above the cavities; and second pixels fixedly provided on the semiconductor substrate without via the cavities, wherein a plurality of the first pixels and a plurality of the second pixels are laid out two-dimensionally to form a pixel region, and each of the second pixels is adjacent to the first pixels.
摘要:
According to one embodiment, an infrared imaging device includes a substrate, a detecting section, an interconnection, a contact plug and a support beam. The detecting section is provided above the substrate and includes an infrared absorbing section and a thermoelectric converting section. The interconnection is provided on an interconnection region of the substrate and is configured to read the electrical signal. The contact plug is extends from the interconnection toward a connecting layer provided in the interconnection region. The contact plug is electrically connected to the interconnection and the connecting layer. The support beam includes a support beam interconnection and supports the detecting section above the substrate. The support beam interconnection transmits the electrical signal from the thermoelectric converting section to the interconnection.
摘要:
An uncooled infrared imaging element includes a pixel region, a device region, and a support substrate. The pixel region includes heat-sensitive pixels. The heat-sensitive pixels are arranged in a matrix and change current-voltage characteristics thereof in accordance with receiving amounts of infrared. The device region includes at least one of a drive circuit and a readout circuit which includes a MOS transistor. The drive circuit drives the heat-sensitive pixels. The readout circuit detects signals of the heat-sensitive pixels. The support substrate is provided with a cavity region to be under pixel region and the MOS transistor.
摘要:
According to one embodiment, an infrared detection device includes a detection element. The detection element includes a semiconductor substrate, a signal interconnect section, a detection cell and a support section. The semiconductor substrate is provided with a cavity on a surface of the semiconductor substrate. The signal interconnect section is provided in a region surrounding the cavity of the semiconductor substrate. The detection cell spaced from the semiconductor substrate above the cavity includes a thermoelectric conversion layer, and an absorption layer. The absorption layer is laminated with the thermoelectric conversion layer, and provided with a plurality of holes each having a shape whose upper portion is widened. The support section holds the detection cell above the cavity and connects the signal interconnect section and the detection cell.
摘要:
Certain embodiments provide an infrared imaging device including: an SOI structure that is placed at a distance from a substrate, and includes: heat-sensitive diodes that detect infrared rays and convert the infrared rays into heat; and STI regions that separate the heat-sensitive diodes from one another; an interlayer insulating film that is stacked on the SOI structure; and supporting legs that are connected to the heat-sensitive diodes and vertical signal lines provided in outer peripheral regions of the heat-sensitive diodes. Each of the supporting legs includes: an interconnect unit that transmit signals to the vertical signal lines; and interlayer insulating layers that sandwich the interconnect unit, each bottom side of the interlayer insulating layers being located in a higher position than the SOI structure.
摘要:
The present invention relates to a method for preparing a composite material comprising a matrix resin of a thermal plastic resin and a liquid crystal resin which has a liquid crystal transition temperature higher than the minimum temperature of capable of molding said thermal plastic resin and which is formed into a fiber structure as a reinforcing material.The method is characterized in that the composite composition is subjected to a melt extrusion process at an apparent shear rate of 3.times.10.sup.2 to 10.sup.5 sec.sup.-1 and above the liquid crystal transition temperature. The resulting material in a filament or thin film has fibers of the liquid crystal resin having an aspect of more than 3 in the matrix resin, so that it is provided with an improved tensile strength by further being subjected to a drawing process at a drawing ratio of 11 to 120. As the composite materials have too small diameter or thickness to be molded in a desired product, they are preferably further subjected to a gathering process, a folding process or a laminating process in which a plurality of strand or film materials are welded to each other at the surface thereof and formed into a strand or sheet form capable of molding.
摘要:
An uncooled infrared imaging device according to an embodiment includes: reference pixels formed on a semiconductor substrate and arranged in at least one row; and infrared detection pixels arranged in the remaining rows and detecting incident infrared rays. Each of the reference pixels includes a first cell located above a first concave portion. The first cell includes a first thermoelectric conversion unit having a first infrared absorption film; and a first thermoelectric conversion element. Each of the infrared detection pixels includes a second cell located above a second concave portion, and having a larger area than the first cell. The second cell includes: a second thermoelectric converting unit located above the second concave portion; and first and second supporting structure units supporting the second thermoelectric converting unit above the second concave portion. The second thermoelectric converting unit includes: a second infrared absorption film; and a second thermoelectric conversion element.