摘要:
Plural grooves are formed in a main surface of semiconductor layers on semiconductor substrate, and gate layers connected to a gate electrode are formed in the plural grooves through a gate insulating film, and then a body diffusion layer is formed between the gate layers, and afterwards, a source diffusion layer connected to a source electrode and a source diffusion layer connected to a source electrode are formed in an identical process.
摘要:
Provided is a technology, in a semiconductor device having a power MISFET and a Schottky barrier diode on one semiconductor substrate, capable of suppressing a drastic increase in the on-resistance of the power MISFET while making the avalanche breakdown voltage of the Schottky barrier diode greater than that of the power MISFET. In the present invention, two epitaxial layers, one having a high doping concentration and the other having a low doping concentration, are formed over a semiconductor substrate and the boundary between these two epitaxial layers is located in a region equal in depth to or shallower than the bottom portion of a trench.
摘要:
In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
摘要:
In order to improve characteristics of an IGBT, particularly, to reduce steady loss, turn-off time and turn-off loss, a thickness of a surface semiconductor layer is set to about 20 nm to 100 nm in an IGBT including: a base layer; a buried insulating film provided with an opening part; the surface semiconductor layer connected to the base layer below the opening part; a p type channel forming layer formed in the surface semiconductor layer; an n+ type source layer; a p+ type emitter layer; a gate electrode formed over the surface semiconductor layer via a gate insulating film; an n+ type buffer layer; and a p type collector layer.
摘要翻译:为了改善IGBT的特性,特别是为了减少稳定损耗,关断时间和关断损耗,在包括基底层的IGBT中,表面半导体层的厚度设定为约20nm至100nm ; 设置有开口部的埋入绝缘膜; 所述表面半导体层在所述开口部的下方与所述基底层连接; 形成在所述表面半导体层中的p型沟道形成层; n +型源层; p +型发射极层; 栅电极,经由栅极绝缘膜形成在所述表面半导体层上; n +型缓冲层; 和p型集电体层。
摘要:
A technology is provided to reduce ON-resistance, and the prevention of punch through is achieved with respect to a trench gate type power MISFET. Input capacitance and a feedback capacitance are reduced by forming a groove in which a gate electrode is formed so as to have a depth as shallow as about 1 μm or less, a p−type semiconductor region is formed to a depth so as not to cover the bottom of the groove, and a p-type semiconductor region higher in impurity concentration than the p−type semiconductor region is formed under a n+type semiconductor region serving as a source region of the trench gate type power MISFET, causing the p-type semiconductor region to serve as a punch-through stopper layer of the trench gate type power MISFET.
摘要:
In a power MISFET having a trench gate structure with a dummy gate electrode, a technique is provided for improving the performance of the power MISFET, while preventing electrostatic breakdown of a gate insulating film therein. A power MISFET having a trench gate structure with a dummy gate electrode, and a protective diode are formed on the same semiconductor substrate. The protective diode is provided between a source electrode and a gate interconnection. In a manufacturing method of such a semiconductor device, a polycrystalline silicon film for the dummy gate electrode and a polycrystalline silicon film for the protective diode are formed simultaneously. A source region of the power MISFET and an n+-type semiconductor region of the protective diode are formed in the same step.
摘要:
A trench gate type power transistor of high performance is provided. A trench gate as a gate electrode is formed in a super junction structure comprising a drain layer and an epitaxial layer. In this case, the gate electrode is formed in such a manner that an upper surface of the epitaxial layer becomes higher than that of a channel layer formed over the drain layer. Then, an insulating film is formed over each of the channel layer and the epitaxial layer and thereafter a part of the insulating film is removed to form side wall spacers over side walls of the epitaxial layer. Subsequently, with the side wall spacers as masks, a part of the channel layer and that of the drain layer are removed to form a trench for a trench gate.
摘要:
In an n-channel type power MISFET, a source electrode in contact with an n+-semiconductor region (source region) and a p+-semiconductor region (back gate contact region) is constituted with an Al film and an underlying barrier film comprised of MoSi2, use of the material having higher barrier height relation to n-Si for the barrier film increasing the contact resistance to n-Si and backwardly biasing the emitter and base of a parasitic bipolar transistor making it less tending to turn-on, thereby decreasing the leak current of power MISFET.
摘要:
In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
摘要:
In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.