摘要:
Embodiments of the invention generally relate processes for epitaxial growing Group III/V materials at high growth rates, such as about 30 μm/hr or greater, for example, about 40 μm/hr, about 50 μm/hr, about 55 μm/hr, about 60 μm/hr, or greater. The deposited Group III/V materials or films may be utilized in solar, semiconductor, or other electronic device applications. In some embodiments, the Group III/V materials may be formed or grown on a sacrificial layer disposed on or over the support substrate during a vapor deposition process. Subsequently, the Group III/V materials may be removed from the support substrate during an epitaxial lift off (ELO) process. The Group III/V materials are thin films of epitaxially grown layers which contain gallium arsenide, gallium aluminum arsenide, gallium indium arsenide, gallium indium arsenide nitride, gallium aluminum indium phosphide, phosphides thereof, nitrides thereof, derivatives thereof, alloys thereof, or combinations thereof.
摘要:
A showerhead for a semiconductor-processing reactor formed by an array of showerhead tiles. Each showerhead tile has a plurality of process gas apertures, which may be in a central area of the tile or may extend over the entire tile. Each showerhead tile can be dimensioned for processing a respective substrate or the array can be dimensioned for processing a substrate. An exhaust region surrounds the process gas apertures. The exhaust region has at least one exhaust aperture, and may include an exhaust slot, a plurality of connected exhaust slots or a plurality of exhaust apertures. The exhaust region surrounds the array of showerhead tiles, or a respective portion of the exhaust region surrounds the plurality of process gas apertures in each showerhead tile or group of showerhead tiles. A gas curtain aperture may be between the exhaust region and the process gas apertures of one of the showerhead tiles or adjacent to the central area of the tile.
摘要:
A chemical vapor deposition (CVD) reactor comprises a deposition zone, a substrate carrier and a liner assembly. The deposition zone is constructed so as to have a positive pressure reactant gases fixed showerhead introducing reactant gas supporting thin film CVD deposition. The substrate carrier movably supports a substrate and the liner assembly within the deposition zone and is heated so as to be subjected to a CVD process. The liner assembly partly encloses selected portions of the deposition zone, particularly portions of the substrate carrier and thereby enclose a hot zone surrounding a substrate to be processed so as to retain heat in that zone but allows gas flow radially outwardly toward walls of a surrounding cold-wall reactor with exhaust ports surrounding the deposition zone that exhaust spent reactant gases. The liner assembly is a sink for solid reaction byproducts while gaseous reaction byproducts are pumped out at the exhaust ports. The liner assembly is linearly movable away from the fixed showerhead.
摘要:
A chemical vapor deposition reactor has one or more deposition zones bounded by gas flow virtual walls, within a housing having closed walls. Each deposition zone supports chemical vapor deposition onto a substrate. Virtual walls formed of gas flows laterally surround the deposition zone, including a first gas flow of reactant gas from within the deposition zone and a second gas flow of non-reactant gas from a region laterally external to the deposition zone. The first and second gas flows are mutually pressure balanced to form the virtual walls. The virtual walls are formed by merging of gas flows at the boundary of each deposition zone. The housing has an exhaust valve to prevent pressure differences or pressure build up that would destabilize the virtual walls. Cross-contamination is reduced, between the deposition zones and the closed walls of the housing or an interior region of the housing outside the gas flow virtual walls.
摘要:
A chemical vapor deposition reactor has one or more deposition zones bounded by gas flow virtual walls, within a housing having closed walls. Each deposition zone supports chemical vapor deposition onto a substrate. Virtual walls formed of gas flows laterally surround the deposition zone, including a first gas flow of reactant gas from within the deposition zone and a second gas flow of non-reactant gas from a region laterally external to the deposition zone. The first and second gas flows are mutually pressure balanced to form the virtual walls. The virtual walls are formed by merging of gas flows at the boundary of each deposition zone. The housing has an exhaust valve to prevent pressure differences or pressure build up that would destabilize the virtual walls. Cross-contamination is reduced, between the deposition zones and the closed walls of the housing or an interior region of the housing outside the gas flow virtual walls.
摘要:
A chemical vapor deposition (CVD) reactor comprises a deposition zone, a substrate carrier and a liner assembly. The deposition zone is constructed so as to have a positive pressure reactant gases fixed showerhead introducing reactant gas supporting thin film CVD deposition. The substrate carrier movably supports a substrate and the liner assembly within the deposition zone and is heated so as to be subjected to a CVD process. The liner assembly partly encloses selected portions of the deposition zone, particularly portions of the substrate carrier and thereby enclose a hot zone surrounding a substrate to be processed so as to retain heat in that zone but allows gas flow radially outwardly toward walls of a surrounding cold-wall reactor with exhaust ports surrounding the deposition zone that exhaust spent reactant gases. The liner assembly is a sink for solid reaction byproducts while gaseous reaction byproducts are pumped out at the exhaust ports. The liner assembly is linearly movable away from the fixed showerhead.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
摘要:
A method of suppressing parasitic particle formation in a metal organic chemical vapor deposition process is described. The method may include providing a substrate to a reaction chamber, and introducing an organometallic precursor, a particle suppression compound and at least a second precursor to the reaction chamber. The second precursor reacts with the organometallic precursor to form a nucleation layer on the substrate. Also, a method of suppressing parasitic particle formation during formation of a III-V nitride layer is described. The method includes introducing a group III metal containing precursor to a reaction chamber. The group III metal precursor may include a halogen. A hydrogen halide gas and a nitrogen containing gas are also introduced to the reaction chamber. The nitrogen containing gas reacts with the group III metal precursor to form the III-V nitride layer on the substrate.
摘要:
A method and apparatus that may be utilized for chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition are provided. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates. A Group III precursor, such as trimethyl gallium, trimethyl aluminum or trimethyl indium and a nitrogen-containing precursor, such as ammonia, are delivered to a plurality of straight channels which isolate the precursor gases. The precursor gases are injected into mixing channels where the gases are mixed before entering a processing volume containing the substrates. Heat exchanging channels are provided for temperature control of the mixing channels to prevent undesirable condensation and reaction of the precursors.
摘要:
Embodiments of the present invention generally relate to methods and apparatus for chemical vapor deposition (CVD) on a substrate, and, in particular, to a process chamber and components for use in metal organic chemical vapor deposition. The apparatus comprises a chamber body defining a process volume. A showerhead in a first plane defines a top portion of the process volume. A carrier plate extends across the process volume in a second plane forming an upper process volume between the showerhead and the susceptor plate. A transparent material in a third plane defines a bottom portion of the process volume forming a lower process volume between the carrier plate and the transparent material. A plurality of lamps forms one or more zones located below the transparent material. The apparatus provides uniform precursor flow and mixing while maintaining a uniform temperature over larger substrates thus yielding a corresponding increase in throughput.