摘要:
The invention features devices and methods for the enrichment of cells and other desired analytes by employing a magnetic field, alone or in conjunction with size-based separation. The devices and methods may be advantageously employed to enrich for rare cells, e.g., fetal cells or epithelial cells, present in a sample, e.g., maternal blood.
摘要:
Embodiments of the present disclosure feature a filtration system comprising a filtration module for particle filtration and methods of using the device for the isolation of particles (e.g., viable cells). Advantageously, embodiments of the device provide for the high throughput filtration of large volumes of sample while preserving cell viability and. providing high yields.
摘要:
The present invention provides systems useful for the enrichment of analytes, for example, cells of selected types, including but not limited to blood cells, stem cells, and pathogens, in samples. The invention also provides methods for analyzing the condition of a patient based on characteristics identified through analysis of the analytes in case and control samples.
摘要:
The present invention relates to methods and devices for separating particles according to size. More specifically, the present invention relates to a microfluidic method and device for the separation of particles according to size using an array comprising a network of gaps, wherein the field flux from each gap divides unequally into subsequent gaps. In one embodiment, the array comprises an ordered array of obstacles in a microfluidic channel, in which the obstacle array is asymmetric with respect to the direction of an applied field.
摘要:
The invention features devices and methods for detecting, enriching, and analyzing circulating tumor cells and other particles. The invention further features methods of diagnosing a condition, e.g., cancer, in a subject by analyzing a cellular sample from the subject.
摘要:
The invention features methods and devices for the delivery of a fluid medium containing analytes, e.g., particles, solutes, or solvents, to an analytical device. The systems are designed to minimize contact with potentially hazardous, fragile, or valuable samples. The systems allow for the dilution, mixing, and introduction of the fluid medium to an analytical device, followed by possible further analysis or sample manipulation.
摘要:
Embodiments of the present disclosure feature a filtration system comprising a filtration module for particle filtration and methods of using the device for the isolation of particles (e.g., viable cells). Advantageously, embodiments of the device provide for the high throughput filtration of large volumes of sample while preserving cell viability and. providing high yields.
摘要:
The invention relates to a method for diagnosing an animal for a condition by obtaining a fluid sample from the animal, enriching a first analyte having a concentration of less than 1×10−3 analytes/μL from said sample by a factor of at least 10,000 fold; and analyzing one or more enriched first analytes to determine a condition in said animal. Enrichment is preferably performed using one or more size-based separation modules.
摘要:
The invention features devices and methods for the deterministic separation of particles. Exemplary methods include the enrichment of a sample in a desired particle or the alteration of a desired particle in the device. The devices and methods are advantageously employed to enrich for rare cells, e.g., fetal cells, present in a sample, e.g., maternal blood and rare cell components, e.g., fetal cell nuclei. The invention further provides a method for preferentially lysing cells of interest in a sample, e.g., to extract clinical information from a cellular component, e.g., a nucleus, of the cells of interest. In general, the method employs differential lysis between the cells of interest and other cells (e.g., other nucleated cells) in the sample.
摘要:
The systems and methods herein involve the use of an automated, high-throughput system that utilizes pressure to transfer a fluid medium containing an analyte. In preferred embodiments, the sample is delivered to an analytical device. The sample can comprise one or more analytes, e.g., solvents, solutes, or particles, including rare cells. The systems are designed to minimize contact with potentially hazardous, fragile, or valuable samples. The systems allow for the dilution, mixing, and introduction of the fluid medium to an analytical device, followed by possible further analysis or sample manipulation. The systems and methods herein allow for partial or substantially complete depletion of a sample container to avoid wasting rare analytes or prevent retention of desired material in a first container.