摘要:
A liquid purification system is provided. Although not limited to water, the purification system is especially suitable for water. The purification system utilizes a vessel having antimicrobial inner wall load bearing surfaces and/or antimicrobial (antibacterial, anti-fungal, anti-mold, etc.) interior non-load bearing surfaces. When the liquid moves within the vessel and contacts the antimicrobial surfaces, the liquid becomes purified or sanitized. The inner wall load bearing surfaces and non-load bearing interior surfaces of the vessel may be manufactured from a host polymer that has antimicrobial organo-metallic additives which form a solid-solution with the host polymer and are distributed homogeneously throughout the host polymer. The host polymer matrix may be an organic material, an inorganic material or an organic-inorganic material blend. The antimicrobial agent polymer matrix may be located in localized zones within the vessel.
摘要:
A printing platform receives (102) (preferably in-line with a semiconductor device printing process (101)) a substrate having at least one semiconductor device printed thereon and further having a test structure printed thereon, which test structure comprises at least one printed semiconductor layer. These teachings then provide for the automatic testing (103) of the test structure with respect to at least one static (i.e., relatively unchanging) electrical characteristic metric. The static electrical characteristic metric (or metrics) of choice will likely vary with the application setting but can include, for example, a measure of electrical resistance, a measure of electrical reactance, and/or a measure of electrical continuity. Optionally (though preferably) the semiconductor device printing process itself is then adjusted (105) as a function, at least in part, of this metric.
摘要:
A low-temperature process for creating a semiconductive device by printing a liquid composition containing semiconducting nanoparticles. The semiconductive device is formed on a polymeric substrate by printing a composition that contains nanoparticles of inorganic semiconductor suspended in a carrier, using a graphic arts printing method. The printed deposit is then heated to remove substantially all of the carrier from the printed deposit. The low-temperature process does not heat the substrate or the printed deposit above 300° C. The mobility of the resulting semiconductive device is between about 10 cm2/Vs and 200 cm2/Vs.
摘要:
Merchandising and marketing data collection systems (100, 400, 500, 700, 1200, 1300, 1400, 1500) collect data on shopper's (816) interaction with merchandise samples (106, 414, 1212, 1400, 1502), page store personnel, output promotional vouchers and use the merchandise samples to access information about the capabilities of the merchandise being sold.
摘要:
An organic semiconductor inverting circuit includes at least three organic transistors, an output terminal (110, 210, 310, 410), a reference supply voltage input (115, 215, 315, 415), a first positive supply voltage input (120, 220, 320, 420), and a negative supply voltage input (125, 225, 325, 425). One of the three organic transistors is an input transistor having a gate to which is coupled an input terminal (105, 205, 305, 405). The output terminal (110, 210, 310, 410) is coupled to a first electrode of at least one of the at least three organic transistors.
摘要:
A semiconductor device formed of a flexible or rigid substrate (10) having a gate electrode (11), a source electrode (12), and a drain electrode (13) formed thereon and organic semiconductor material (14) disposed at least partially thereover. With appropriate selection of material, the gate electrode (11) will form a Schottky junction and an ohmic contact will form between the organic semiconductor material (14) and each of the source electrode (12) and drain electrode (13). In many of the embodiments, any of the above elements can be formed through contact or non-contact printing. Sizing of the resultant device can be readily scaled to suit various needs.
摘要:
A selectively filled thermally curable adhesive film (10) contains a fluxing agent for reflow soldering an electronic device to a substrate. The adhesive film has a central, region (12) and a boundary region (14) surrounding the central region. The central region consists of an adhesive that is filled with an inert filler to reduce the co-efficient of thermal expansion of the adhesive. The boundary region consists of an unfilled adhesive and a fluxing agent. The film may be used to adhesively bond a flip chip semiconductor die (20) to a substrate (21). When solder bumps (22) on the die are reflowed, the fluxing agent acts to remove any oxides present on the solderable surfaces of the substrate or the die.
摘要:
A method and apparatus for forming controlled stress fractures in metal produces electrically isolated, closely spaced circuit sub-entities for use on a metallized printed wiring board. A polymeric substrate has a layer of metal adhered to the surface, and the metal layer is formed into entities. Each entity has a fracture initiating feature formed into it, which serves to initiate and/or direct a stress crack that is induced in the metal. The entities are fractured in a controlled manner by subjecting the substrate and the entities to mechanical stress by a rapid thermal excursion, creating a stress fracture in the entity extending from the fracture initiating feature. The stress fracture divides each entity into two or more sub-entities that are electrically isolated from each other by the stress fracture. The resulting structure can be used to form circuitry requiring very fine spaces for high density printed circuit boards. The rapid thermal stress may be induced by a high intensity, strobed xenon arc lamp.
摘要:
A protective photochromic barrier film for a light-sensitive printed electronic substrate. Light-sensitive semiconductor devices on a dielectric substrate are electrically connected by conductors. A barrier layer containing photochromic dyes covers some or all of the light-sensitive semiconductor devices. Upon exposure to visible, infrared, or ultraviolet light, the photochromic dyes change chemical structure and decrease the amount of visible or non-visible light that can impinge upon the light-sensitive electronic devices. Upon removal of the visible or non-visible light, the photochromic dyes either revert to their original structure or maintain their altered state.
摘要:
A semiconductor device made on a polymer substrate using graphic arts printing technology uses a printable organic semiconductor. An electrode is situated on the substrate, and a dielectric layer is situated over the electrode. Another electrode(s) is situated on the dielectric layer. The exposed surfaces of the dielectric and the top electrode are treated with a reactive silane to alter the surface of the electrode and the dielectric sufficiently to allow an overlying organic semiconductor layer to have good adhesion to both the electrode and the dielectric. In various embodiments, the electrodes may be printed, and the dielectric layer may also be printed.