摘要:
There is provided a light emitting device that includes a base wafer that contains silicon, a plurality of seed bodies provided in contact with the base wafer, and a plurality of Group 3-5 compound semiconductors that are each lattice-matched or pseudo-lattice-matched to corresponding seed bodies. In the device, a light emitting element that emits light in response to current supplied thereto is formed in at least one of the plurality of the Group 3-5 compound semiconductors, and a current limiting element that limits the current supplied to the light emitting element is formed in at least one of the plurality of the Group 3-5 compound semiconductors other than the Group 3-5 compound semiconductor in which the light emitting element is formed.
摘要:
A sensor includes: a base wafer containing silicon; a seed member provided directly or indirectly on the base wafer; and a photothermal absorber that is made of a Group 3-5 compound semiconductor lattice-matching or pseudo lattice-matching the seed member and being capable of generating a carrier upon absorbing light or heat, where the photothermal absorber outputs an electric signal in response to incident light to be introduced into the photothermal absorber or heat to be applied to the photothermal absorber. A semiconductor wafer includes: a base wafer containing silicon; a seed member provided directly or indirectly on the base wafer; and a photothermal absorber that is made of a Group 3-5 compound semiconductor lattice-matching or pseudo lattice-matching the seed member and being capable of generating a carrier upon absorbing light or heat.
摘要:
Provided is a semiconductor wafer including: a base wafer whose surface is made of a silicon crystal: a SixGe1-xC (0≦x
摘要翻译:本发明提供一种半导体晶片,其包括:表面由硅晶体制成的基底晶片:形成在硅晶体的局部区域中的SixGe1-xC(0&nlE; x <1)外延晶体; 以及形成在SixGe1-xC(0&nlE; x <1)外延晶体上的第3族氮化物半导体晶体。 在一个示例中,半导体晶片包括形成在硅晶体上的抑制剂,包含露出硅晶体的孔,并抑制晶体生长,并且在孔径中形成SixGe1-xC(0&lt; n1E; x <1)外延晶体 。
摘要:
To improve the flatness of the surface and improve the reliability of a semiconductor device when expitaxially growing semiconductor crystal layers of different types on a single silicon wafer, provided is a semiconductor wafer which includes: a base wafer having a silicon crystal in the surface thereof, the silicon crystal having a first dent and a second dent; a first Group IVB semiconductor crystal located in the first dent and exposed; a second Group IVB semiconductor crystal located in the second dent; and a Group III-V compound semiconductor crystal located above the second Group IVB semiconductor crystal in the second dent and exposed.
摘要:
Electronic device is provided, including: a base wafer whose surface is made of silicon crystal; a Group 3-5 compound semiconductor crystal formed directly or indirectly on partial region of the silicon crystal; an electronic element including a portion of the Group 3-5 compound semiconductor crystal as active layer; an insulating film formed directly or indirectly on the base wafer and covering the electronic element; an electrode formed directly or indirectly on the insulating film; a first coupling wiring extending through the insulating film, having at least a portion thereof formed directly or indirectly on the insulating film, and electrically coupling the electronic element with the electrode; a passive element formed directly or indirectly on the insulating film; a second coupling wiring extending through the insulating film, having at least a portion thereof formed directly or indirectly on the insulating film, and electrically coupling the electronic element with the passive element.
摘要:
Provided is an optical device including a base wafer containing silicon, a plurality of seed crystals disposed on the base wafer, and a plurality of Group 3-5 compound semiconductors lattice-matching or pseudo lattice-matching the plurality of seed crystals. At least one of the Group 3-5 compound semiconductors has a photoelectric semiconductor formed therein, the photoelectric semiconductor including a light emitting semiconductor that emits light in response to a driving current supplied thereto or a light receiving semiconductor that generates a photocurrent in response to light applied thereto, and at least one of the plurality of Group 3-5 compound semiconductors other than the Group 3-5 compound semiconductor having the photoelectric semiconductor has a heterojunction transistor formed therein.
摘要:
There is provided a semiconductor wafer including a base wafer that has an impurity region in which an impurity atom has been introduced into silicon, a plurality of seed bodies provided in contact with the impurity region, and a plurality of compound semiconductors each provided in contact with the corresponding seed bodies and lattice-matched or pseudo-lattice-matched to the corresponding seed bodies. The semiconductor wafer can further include an inhibitor provided on the base wafer and in which a plurality of apertures exposing at least a part of the impurity region are provided.
摘要:
A semiconductor substrate includes a substrate, an insulating layer, and a semiconductor layer. The insulating layer is over and in contact with the substrate. The insulating layer includes at least one of an amorphous metal oxide and an amorphous metal nitride. The semiconductor layer is over and in contact with the insulating layer. The semiconductor layer is formed by crystal growth.
摘要:
A semiconductor wafer includes a base wafer, a sacrificial layer that is lattice-matched or pseudo lattice-matched to the base wafer, a first crystal layer that is formed on the sacrificial layer and made of an epitaxial crystal of SixGe1-x, (0≦x
摘要翻译:半导体晶片包括基底晶片,与基底晶片进行晶格匹配或伪晶格匹配的牺牲层,形成在牺牲层上并由SixGe1-x的外延晶体制成的第一晶体层(0&nlE ; x <1);以及第二晶体层,其形成在第一晶体层上并且由具有比第一晶体层更大的带隙的组3-5化合物半导体的外延晶体制成。 基底晶片例如由单晶GaAs制成。 牺牲层例如由InmAlnGa1-m-nAs(0&nlE; m <1,0
摘要:
Provided is a semiconductor wafer including: a base wafer containing silicon; an inhibitor that has been formed on the base wafer, has an aperture in which a surface of the base wafer is exposed, and inhibits crystal growth; and a light-absorptive structure that has been formed inside the aperture in contact with a surface of the base wafer exposed inside the aperture, where the light-absorptive structure includes a first semiconductor and a second semiconductor.