摘要:
An active matrix color crystal display has an active matrix circuit, a counterelectrode panel and an interposed layer of liquid crystal. The active matrix display is located in a portable microdisplay system. The image is written to the the display therein causing the liquid crystal to move to a specific image position. A light source is flashed to illuminate the display. The pixel electrodes are set to a specific value to cause the liquid crystal to move towards a desired position. The process of writing, flashing, and setting the electrode intensity value to reorient the liquid crystal to produce an image is repeated. Portable system can include a digital camera, cellular telephone, camcorder, heads up display, instant print camera, pager,
摘要:
A multi-layered structure is fabricated in which a microprocessor is configured in different layers and interconnected vertically through insulating layers which separate each circuit layer of the structure. Each circuit layer can be fabricated in a separate wafer or thin film material and then transferred onto the layered structure and interconnected.
摘要:
The present invention relates to methods of fabricating pixel electrodes for active matrix displays including the formation of arrays of transistor circuits in thin film silicon on an insulating substrate and transfer of this active matrix circuit onto an optically transmissive substrate. An array of color filter elements can be formed prior to transfer of the active matrix circuit that are aligned between a light source for the display and the array of pixel electrodes to provide a color display.
摘要:
A multi-layered structure is fabricated in which a microprocessor is configured in different layers and interconnected vertically through insulating layers which separate each circuit layer of the structure. Each circuit layer can be fabricated in a separate wafer or thin film material and then transferred onto the layered structure and interconnected.
摘要:
A multi-layered structure is fabricated in which a microprocessor is configured in different layers and interconnected vertically through insulating layers which separate each circuit layer of the structure. Each circuit layer can be fabricated in a separate wafer or thin film material and then transferred onto the layered structure and interconnected.
摘要:
A multi-layered structure is fabricated in which a microprocessor is configured in different layers and interconnected vertically through insulating layers which separate each circuit layer of the structure. Each circuit layer can be fabricated in a separate wafer or thin film material and then transferred onto the layered structure and interconnected.
摘要:
The present invention relates to methods of fabricating pixel electrodes (44) for active matrix displays including the formation of arrays of transistor circuits in thin film silicon (10) on an insulating substrate and transfer of this active matrix circuit onto an optically transmissive substrate (24). An array of color filter elements can be formed prior to transfer of the active matrix circuit that are aligned between a light source for the display and the array of pixel electrodes to provide a color display.
摘要:
The invention relates to the formation of arrays of thin film transistors (TFT's) on silicon substrates and the dicing and tiling of such substrates for transfer to a common module body. TFT's activate display electrodes formed adjacent the transistors after the tiles have been transferred.
摘要:
The invention relates to device processing, packaging and interconnects that will yield integrated electronic circuitry of higher density and complexity than can be obtained by using conventional multi-chip modules. Processes include the formation of complex multi-function circuitry on common module substrates using circuit tiles of silicon thin-films which are transferred, interconnected and packaged. Circuit modules using integrated transfer/interconnect processes compatible with extremely high density and complexity provide large-area active-matrix displays with on-board drivers and logic in a complete glass-based modules. Other applications are contemplated, such as, displays, microprocessor and memory devices, and communication circuits with optical input and output.
摘要:
A semiconductor fabrication method improves the voltage characteristic of floating-body MOSFETs by creating recombination centers near the source-body junction of the device. A MOSFET is fabricated through the passivation oxidation stage, and a photolithography step is used to expose the source region. Implantation is then performed using one of two types of material. A first type creates electron traps of predetermined energy in the vicinity of the source-body junction. A second type creates defects in the crystalline structure of the semiconductor material. Both implantation types create recombination centers in the material. This allows the discharge through the source-body junction of charges built up in the body region.