Abstract:
An electronic component module includes a substrate, a sub-module to be mounted on a main surface of the substrate, and a terminal conductor formed on a main surface of the substrate. The sub-module includes a substrate, an electronic component, an electronic component, and an electronic component. The substrate has a main surface and a main surface. The electronic component and the electronic component are mounted on the main surface. The electronic component is mounted on the main surface. The substrate has a through hole that penetrates between the main surface and the main surface. The sub-module is mounted so that the electronic component may be housed in the through hole.
Abstract:
An electronic component module includes a plurality of components including a terminal and placed along a plane, a frame substrate supporting at least some components among the plurality of components, a sealing resin portion sealing the plurality of components and the frame substrate, and a shield layer covering an outer surface of the sealing resin portion. The frame substrate includes an insulating layer, a ground layer, and a ground bump electrically connected to the ground layer, and also an opening supporting a portion other than solder bumps of bump components, and the ground layer of the frame substrate is exposed to a side surface of the frame substrate and is electrically connected to the shield layer. The terminal of the plurality of components and the ground bump are exposed while protruding from a plane of the sealing resin portion and are used as mounting terminals of the electronic component module.
Abstract:
A high frequency module having a groove for shielding formed in a sealing resin layer achieves downsizing without damaging wiring electrodes formed on a wiring board or mounting components. A manufacturing method of a high frequency module includes mounting components on an upper surface of a wiring board, and then forming a sacrificial layer for forming a groove. The method further includes forming a sealing resin layer for sealing the components and the sacrificial layer, and dissolving and removing the sacrificial layer to form the groove for shielding. Finally, the method includes forming a shield film coating the surface of the sealing resin layer, and the high frequency module is manufactured. With this method, even when the groove is formed at a position overlapping with the component or a surface layer wiring electrode, the high frequency module can be downsized without damaging the component or the surface layer wiring electrode.
Abstract:
To provide a compact module that is capable of achieving a low profile and that has excellent high-frequency characteristics, a module includes a parent board; first and second child boards arranged so as to face the parent board; multiple electronic components that include first electrodes and second electrodes electrically connected to the first electrodes, respectively, on both opposing faces, the first electrodes being connected to the first child board, the second electrodes being connected to the parent board; and multiple electronic components that include first electrodes and second electrodes electrically connected to the first electrodes, respectively, on both opposing faces, the first electrodes being connected to the second child board, the second electrodes being connected to the parent board.
Abstract:
A circuit module includes: a substrate including a first main surface and a second main surface; a resin layer on the first main surface of the substrate; an electronic component; a penetrating portion penetrating the resin layer in a thickness direction; a first conductor that is a pillar conductor present in the penetrating portion, the first conductor including a first bottom closer to the substrate and a second bottom inward of an outer surface of the resin layer; a second conductor that is a metal film covering at least a portion of a side surface of the first conductor, the second conductor including a portion extending continuously from the side surface of the first conductor to the same plane with the outer surface of the resin layer.
Abstract:
To provide electronic circuit module capable of dissipating heat generated by electronic component while suppressing increase in thickness, and capable of improving identifiability and visibility of identification character and identification mark as compared with conventional technique. Electronic circuit module according to present disclosure includes board, plurality of electronic components mounted on upper surface of board; and sealing resin configured to cover electronic component. Sealing resin has lower surface in contact with upper surface of board, and upper surface positioned on opposite side from board with respect to electronic component to face in opposite direction from lower surface. Identification recess constituting at least one of identification character and identification mark when viewed from thickness direction of board is formed in upper surface of sealing resin. Identification recess is filled with filler made of material having higher thermal conductivity than material of sealing resin.
Abstract:
The present disclosure is directed to an electronic component module including: a substrate; an electronic component mounted on the substrate; and a sub-module mounted on the substrate, the sub-module including a wiring board, a first electronic component disposed on one of two main surfaces of the wiring board, a second electronic component disposed on the other of the two main surfaces of the wiring board, and a first sealing member that covers the wiring board, the first electronic component, and the second electronic component.
Abstract:
An electronic component module includes a substrate having a main surface, an electronic component mounted on the main surface, a sealing resin having an insulation property and covering the electronic component and the main surface, and a conductive film that covers an outer surface of the sealing resin. The electronic component includes a housing whose outer surface has an insulation property, and a first external electrode arranged at one end of the housing. The electronic component module includes a conductive auxiliary layer that covers a part of the first external electrode and a part of the housing on a side of the electronic component opposite to the substrate. The sealing resin has a recessed portion that exposes the conductive auxiliary layer. A conductive portion is formed in the recessed portion and is connected to the conductive film and the conductive auxiliary layer.
Abstract:
A module includes: a substrate having a first surface; a first component mounted on the first surface; a first sealing resin disposed to cover the first surface and the first component; a shield film covering at least a side surface of the first sealing resin; a first ground terminal mounted on the first surface; and a protruding portion formed to extend laterally at any position of the first ground terminal in a direction perpendicular to the first surface. The protruding portion is electrically connected to a portion of the shield film that covers the side surface of the first sealing resin.
Abstract:
An adhesion between a sealing resin layer and a shield film is improved by a mesh sheet disposed on an opposite surface of the sealing resin layer. A radio frequency module includes a wiring board, a component mounted on an upper surface of the wiring board, a sealing resin layer that covers the component, a mesh sheet disposed on an upper surface of the sealing resin layer, and a shield film provided to cover the upper surface and side surfaces of the sealing resin layer, and the mesh sheet. The mesh sheet and the sealing resin layer, as well as the mesh sheet and the shield film are firmly in adhesion with one another. Thus, the adhesion between the sealing resin layer and the shield film can be improved.