Abstract:
A method is provided for a full-area optical characterization of an optoelectronic semiconductor material which is provided for producing a plurality of optoelectronic semiconductor chips and which has a band gap which specifies a characteristic wavelength of the semiconductor material. The method includes full-area irradiating a major surface of the optoelectronic semiconductor material with light having an excitation wavelength which is less than the characteristic wavelength of the semiconductor material, with the full-area irradiating generating electron-hole pairs in the semiconductor material. The method further includes full-area detecting a recombination radiation having the characteristic wavelength which is emitted as a result of recombination of the electron-hole pairs from the major surface of the semiconductor material. A device for carrying out the method is also provided.
Abstract:
Described is a method for producing a nitride compound semiconductor layer, involving the steps of:—depositing a first seed layer (1) comprising a nitride compound semiconductor material on a substrate (10);—desorbing at least some of the nitride compound semiconductor material in the first seed layer from the substrate (10);—depositing a second seed layer (2) comprising a nitride compound semiconductor material; and—growing the nitride compound semiconductor layer (3) containing a nitride compound semiconductor material onto the second seed layer (2).
Abstract:
Disclosed is a conversion element (1) comprising an active region (13) that is formed by a semiconductor material and includes a plurality of barriers (131) and quantum troughs (132), a plurality of first structural elements (14) on a top face (la) of the conversion element (1), and a plurality of second structural elements (15) and/or third structural elements (16) which are arranged on a face of the active region (13) facing away from the plurality of first structural elements (14). Also disclosed is a method for producing a conversion element of said type.
Abstract:
The invention relates to a component (10) having a semiconductor layer sequence, which has a p-conducting semiconductor layer (1), an n-conducting semiconductor layer (2), and an active zone (3) arranged between the p-conducting semiconductor layer and the n-conducting semiconductor layer, wherein the active zone has a multiple quantum well structure, which, from the p-conducting semiconductor layer to the n-conducting semiconductor layer, has a plurality of p-side barrier layers (32p) having intermediate quantum well layers (31) and a plurality of n-side barrier layers (32n) having intermediate quantum layers (31). Recesses (4) having flanks are formed in the semiconductor layer sequence on the part of the p-conducting semiconductor layer, wherein the quantum well layers and/or the n- and p-side barrier layers extend in a manner conforming to the flanks of the recesses at least in regions. The interior barrier layers have a larger average layer thickness than the p-side barrier layers.
Abstract:
The invention concerns an optoelectronic component comprising a layer structure with a light-active layer. In a first lateral region the light-active layer has a higher density of V-defects than in a second lateral region.