Abstract:
A method and system for delivering a mixed slurry for use chemical mechanical polishing operation. A first slurry may be mixed with a second slurry to provide a mixed slurry thereof. A flow rate and a mixing ratio associated with the mixed slurry can be controlled to provide an accurate flow rate control and adjustable mixing ratio thereof. The first slurry and the second slurry may be mixed in-line utilizing an in-line mixing mechanism to provide a mixed slurry thereof. Alternatively, the first and second slurries may be pre-mixed utilizing a pre-mixing mechanism to provide a mixed slurry there.
Abstract:
An LGA connector is used to interconnect an LGA package and a printed circuit board. The LGA connector includes an elastomeric body with a plurality of through-holes. Metal films are formed on inner walls of through-holes and splay out around the mouths of their upper and lower openings. The metal films are formed by vacuum metallization, sputtering, chemical plating, electrical plating or PVD. The through-holes have a funnel-like shape to absorb external stresses and redirect the stress to shrink the through-hole diameters. Moreover, the metal films' elastic deformation is larger than conventional metal conductive fillers so as to improve reliability.
Abstract:
The present disclosure provides for a method and system for fabricating an insulating layer on a substrate. The method and system provide a fluid to a substrate, wherein the fluid is provided in an aerosol form. The method and system also provides for generating a supercritical process environment proximate to the substrate. The method and system further provides a proximate supercritical process environment having a supercritical process temperature and a supercritical process pressure for altering the fluid, and placing the substrate in contact with the altered fluid, wherein the insulating layer is formed on the substrate by a reaction between the substrate and the fluid.
Abstract:
A planarizing method for forming a patterned planarized aperture fill layer within an aperture employs a planarizing stop layer formed of a reductant based material, such as but not limited to a hydrogenated silicon nitride material. The reductant based material provides the planarizing stop layer with enhanced planarizing stop properties. The method is particularly useful within the context of CMP planarizing methods.
Abstract:
A method of integrating a post-etching cleaning process with deposition for a semiconductor device. A substrate having a damascene structure formed by etching a dielectric layer formed thereon using an overlying photoresist mask as an etching mask is provided. A cleaning process is performed by a supercritical fluid to remove the photoresist mask and post-etching by-products. An interconnect layer is formed in-situ in the damascene structure using the supercritical fluid as a reaction medium, wherein the cleaning process and the subsequent interconnect layer formation are performed in one process chamber or in different process chambers of a processing tool.
Abstract:
A method of forming an oxide layer. A fluid, such as water, is heated and pressurized to supercritical or near-supercritical conditions and mixed with at least one oxidizing agent. The supercritical state mixture of the fluid and at least one oxidizing agent is then applied on the workpiece, forming an oxide layer on the workpiece. The at least one oxidizing agent may comprise nitrogen, and the oxide layer formed on the workpiece may comprise a nitrogen doped oxide.
Abstract:
A planarizing method for forming a patterned planarized aperture fill layer within an aperture employs a planarizing stop layer formed of a reductant based material, such as but not limited to a hydrogenated silicon nitride material. The reductant based material provides the planarizing stop layer with enhanced planarizing stop properties. The method is particularly useful within the context of CMP planarizing methods.
Abstract:
A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
Abstract:
The present invention provides a method of adjusting light diffusing and light focusing capability of an optical element. First, an optical substrate having a first surface area is provided. Then, pluralities of pervious convexes are formed on an optical substrate, wherein the pervious convexes occupy a second surface area on the optical substrate. Diffusing effect of the optical element can be lowered/improved by increasing/decreasing an arrangement regularity of the pervious convexes. Diffusing effect enlarging/reducing the size of the optical element can also be lowered/increased by enlarging/reducing the size of pervious convexes. The focusing effects of the optical element can be improved/lowered by increasing/decreasing the ratio of the second surface area and the first surface area.
Abstract:
An optical module is provided. The optical module comprises a light source, a first lens array and a second lens array. The first lens array is located on the light source and the second lens array is located on the first lens array. There are a plurality of curved bumps on the surface of the first lens array. There are a plurality of pyramid bumps on the surface of the second lens array.