摘要:
A high-performance radiation sensitive silicon-containing negative-tone resist is provided along with a method of using the silicon-containing resist in multilayer, including bilayer, imaging for manufacturing semiconductor devices. The negative-tone silicon-containing resist is based on an acid catalyzed high-contrast crosslinking of aqueous base soluble silicon-containing phenolic polymers through reaction of a carbocation of the crosslinking agent with the hydroxyl site of the phenolic group in the silicon-containing polymers. A chemically amplified silicon-containing negative-tone resist composition comprising said silicon-containing polymer resin; at least one crosslinking agent; one acid generator; and a solvent is provided. The silicon-containing resist composition has high silicon content and provide excellent resolution and a means of patterning high aspect ratio resist patterns. The resist compositions can be used as the top imaging layer in a multilayer, including bilayer, scheme to fabricate semiconductor devices using various irradiation sources, such as mid-ultraviolet (UV), deep-UV, extreme UV, X-ray, e-beam and ion-beam irradiation.
摘要:
A high-performance radiation sensitive silicon-containing negative-tone resist is provided along with a method of using the silicon-containing resist in multilayer, including bilayer, imaging for manufacturing semiconductor devices. The negative-tone silicon-containing resist is based on an acid catalyzed high-contrast crosslinking of aqueous base soluble silicon-containing phenolic polymers through reaction of a carbocation of the crosslinking agent with the hydroxyl site of the phenolic group in the silicon-containing polymers. A chemically amplified silicon-containing negative-tone resist composition comprising said silicon-containing polymer resin; at least one crosslinking agent; one acid generator; and a solvent is provided. The silicon-containing resist composition has high silicon content and provide excellent resolution and a means of patterning high aspect ratio resist patterns. The resist compositions can be used as the top imaging layer in a multilayer, including bilayer, scheme to fabricate semiconductor devices using various irradiation sources, such as mid-ultraviolet (UV), deep-UV, extreme UV, X-ray, e-beam and ion-beam irradiation.
摘要:
An apparatus and method for forming a patterned graphene layer on a substrate. One such method includes forming at least one patterned structure of a carbide-forming metal or metal-containing alloy on a substrate, applying a layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy on the substrate, heating the layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy in an environment to remove graphene regions proximate to the at least one patterned structure of a carbide-forming metal or metal-containing alloy, and removing the at least one patterned structure of a carbide-forming metal or metal-containing alloy to produce a patterned graphene layer on the substrate, wherein the patterned graphene layer on the substrate provides carrier mobility for electronic devices.
摘要:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
摘要:
A process comprises combining a Ce (IV) salt with a carbon material comprising CNT or graphene wherein the Ce (IV) salt is selected from a Ce (IV) ammonium salt of a nitrogen oxide acid and is dissolved in a solvent comprising water. The process is conducted under conditions to substantially oxidize the carbon material to produce an oxidized material that is substantially non-conducting. After the oxidation, the Ce (IV) is substantially removed from the oxidized material. This produces a product made by the process. An article of manufacture comprises the product on a substrate. The oxidized material can be formed as a pattern on the substrate. In another embodiment the substrate comprises an electronic device with the oxidized material patterning non-conductive areas separate from conductive areas of the non-oxidized carbon material, where the conductive areas are operatively associated with the device.
摘要:
Graphene transistor devices and methods of their fabrication are disclosed. One such graphene transistor device includes source and drain electrodes and a gate structure including a dielectric sidewall spacer that is disposed between the source and drain electrodes. The device further includes a graphene layer that is adjacent to at least one of the source and drain electrodes, where an interface between the source/drain electrode(s) and the graphene layer maintains a consistent degree of electrical conductivity throughout the interface.
摘要:
A method and an apparatus for doping a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility. The method includes selectively applying a dopant to a channel region of a graphene or nanotube thin-film field-effect transistor device to improve electronic mobility of the field-effect transistor device.
摘要:
A technique for nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
摘要:
A gate tunable diode is provided. The gate tunable diode includes a gate dielectric formed on a gate electrode and a graphene electrode formed on the gate dielectric. Also, the gate tunable diode includes a tunnel dielectric formed on the graphene electrode and a tunnel electrode formed on the tunnel dielectric.
摘要:
A process of doping a silicon layer with dopant atoms generally includes reacting a vapor of a dopant precursor with oxide and/or hydroxide reactive sites present on the silicon layer to form a self assembled monolayer of dopant precursor; hydrolyzing the self assembled monolayer of the dopant precursor with water vapor to form pendant hydroxyl groups on the dopant precursor; capping the self assembled monolayer with an oxide layer; and annealing the silicon layer at a temperature effective to diffuse dopant atoms from the dopant precursor into the silicon layer. Additional monolayers can be formed in a similar manner, thereby providing controlled layer-by-layer vapor phase deposition of the dopant precursor compounds for controlled doping of silicon.