Abstract:
The performances of a semiconductor device are improved. The semiconductor device has a first control gate electrode and a second control gate electrode spaced along the gate length direction, a first cap insulation film formed over the first control gate electrode, and a second cap insulation film formed over the second control gate electrode. Further, the semiconductor device has a first memory gate electrode arranged on the side of the first control gate electrode opposite to the second control gate electrode, and a second memory gate electrode arranged on the side of the second control gate electrode opposite to the first control gate electrode. The end at the top surface of the first cap insulation film on the second control gate electrode side is situated closer to the first memory gate electrode side than the side surface of the first control gate electrode on the second control gate electrode side.
Abstract:
In a method of manufacturing a semiconductor device according to one embodiment, after a semiconductor wafer including a non-volatile memory, a bonding pad and an insulating film comprised of an organic material is provided, a probe needle is contacted to a surface of the bonding pad located in a second region, and a data is written to the non-volatile memory. Here, the insulating film is formed by performing a first heat treatment to the organic material. Also, after a second heat treatment is performed to the semiconductor wafer, and the non-volatile memory to which the data is written is checked, a barrier layer and a first solder material are formed on the surface of the bonding pad located in a first region by using an electroplating method. Further, a bump electrode is formed in the first region by performing a third heat treatment to the first solder material.
Abstract:
In a semiconductor device, a memory cell is formed of a control gate electrode and a memory gate electrode adjacent to each other, a gate insulating film formed below the control gate electrode and an insulating film formed below the memory gate electrode and having a charge accumulating part therein. Also, in this semiconductor device, a capacitive element is formed of a lower electrode, an upper electrode and a capacitive insulating film formed between the upper electrode and the lower electrode. A thickness of the lower electrode is smaller than a thickness of the control gate electrode.
Abstract:
In order to improve the reliability of a semiconductor device, dummy wiring includes: a first dummy part provided to be spaced apart from and to be parallel to, of a plurality of sides that form a pad, a first side nearest to a corner; and a second dummy part provided to be spaced apart from and to be parallel to, of the sides that form the pad, a second side nearest to an edge side of a semiconductor chip. That is, the dummy wiring is formed by: a first dummy part extending along the first side of the pad; and a second dummy part extending along the second side of the pad.
Abstract:
An improvement is achieved in the manufacturing yield of a semiconductor device including a plurality of field effect transistors having different characteristics over the same substrate. By combining anisotropic dry etching with isotropic wet etching or isotropic dry etching, three types of sidewalls having different sidewall lengths are formed. By reducing the number of anisotropic dry etching steps, in a third n-type MISFET region and a third p-type MISFET region where layout densities are high, it is possible to prevent a semiconductor substrate from being partially cut between n-type gate electrodes adjacent to each other, between the n-type gate electrode and a p-type gate electrode adjacent to each other, and the p-type gate electrodes adjacent to each other.
Abstract:
An improvement is achieved in the manufacturing yield of a semiconductor device including a plurality of field effect transistors having different characteristics over the same substrate. By combining anisotropic dry etching with isotropic wet etching or isotropic dry etching, three types of sidewalls having different sidewall lengths are formed. By reducing the number of anisotropic dry etching steps, in a third n-type MISFET region and a third p-type MISFET region where layout densities are high, it is possible to prevent a semiconductor substrate from being partially cut between n-type gate electrodes adjacent to each other, between the n-type gate electrode and a p-type gate electrode adjacent to each other, and the p-type gate electrodes adjacent to each other.
Abstract:
In a semiconductor device, a memory cell is formed of a control gate electrode and a memory gate electrode adjacent to each other, a gate insulating film formed below the control gate electrode and an insulating film formed below the memory gate electrode and having a charge accumulating part therein. Also, in this semiconductor device, a capacitive element is formed of a lower electrode, an upper electrode and a capacitive insulating film formed between the upper electrode and the lower electrode. A thickness of the lower electrode is smaller than a thickness of the control gate electrode.
Abstract:
To improve a semiconductor device having a nonvolatile memory. A first MISFET, a second MISFET, and a memory cell are formed, and a stopper film made of a silicon oxide film is formed thereover. Then, over the stopper film, a stress application film made of a silicon nitride film is formed, and the stress application film over the second MISFET and the memory cell is removed. Thereafter, heat treatment is performed to apply a stress to the first MISFET. Thus, a SMT is not applied to each of elements, but is applied selectively. This can reduce the degree of degradation of the second MISFET due to H (hydrogen) in the silicon nitride film forming the stress application film. This can also reduce the degree of degradation of the characteristics of the memory cell due to the H (hydrogen) in the silicon nitride film forming the stress application film.
Abstract:
A semiconductor device includes a corner constituted by a first side and a second side being perpendicular to the first side; and a plurality of pads including a first pad, arranged along the second side and formed over a semiconductor substrate. The first pad is arranged nearer the corner than other pads of the plurality of pads. The first pad includes a third side, a fourth side being perpendicular to the third side, a fifth side being parallel to the third side and a sixth side being perpendicular to a fifth side. The third side and the fourth side are nearer to the corner than the fifth side and sixth side. A first dummy wiring is formed along the first side. A second dummy wiring is formed along the second side. The first dummy wiring and the second dummy wiring are formed integrally with each other.
Abstract:
The performances of a semiconductor device are improved. The semiconductor device has a first control gate electrode and a second control gate electrode spaced along the gate length direction, a first cap insulation film formed over the first control gate electrode, and a second cap insulation film formed over the second control gate electrode. Further, the semiconductor device has a first memory gate electrode arranged on the side of the first control gate electrode opposite to the second control gate electrode, and a second memory gate electrode arranged on the side of the second control gate electrode opposite to the first control gate electrode. The end at the top surface of the first cap insulation film on the second control gate electrode side is situated closer to the first memory gate electrode side than the side surface of the first control gate electrode on the second control gate electrode side.