Abstract:
An optical transmission converter comprises a wavelength selector configured to output a reception wavelength selection signal and a transmission wavelength selection signal in response to a wavelength control signal, an opto-electrical converter configured to convert a selection optical signal into a reception electrical signal based on a reception optical signal from a host device and the reception wavelength selection signal, and an electro-optical converter configured to convert a transmission electrical signal into a transmission optical signal based on the transmission wavelength selection signal and the transmission electrical signal.
Abstract:
A data alignment circuit of a semiconductor memory device including: a data sampling circuit configured to receive a data sequence and an internal data strobe signal, wherein the data sampling circuit samples the data sequence based on the internal data strobe signal to generate first and second data sequences; a division circuit configured to receive a clock signal and the internal data strobe signal, divide the clock signal to produce a divided clock signal and output an alignment control signal by sampling the divided clock signal based on the internal data strobe signal; and a data alignment block configured to receive the first and second data sequences, and the alignment control signal, and align the first and second data sequences in parallel to output internal data.
Abstract:
A memory device is provided. The memory device includes programming first bit data into a plurality of memory cells; identifying target memory cells which are in a first state and whose threshold voltages are equal to or greater than a first voltage from the memory cells programmed with the first bit data; receiving second bit data which is to be programmed into the memory cells; calculating a plurality of third bit data by performing a first process on the second bit data; selecting third bit data which changes a largest number of target memory cells from the first state to a second state in response to the memory cells being programmed with each of the plurality of third bit data from the plurality of third bit data; and programming the selected third bit data into the memory cells.
Abstract:
A memory module includes memory devices arranged in ranks and columns and designated in first and second groupings, the first grouping includes memory devices arranged in only a first rank nearest a memory controller and directly connected to the memory controller, the memory devices in the second grouping are indirectly connected to the memory controller via a corresponding memory device in the first grouping arranged in a same column, and each memory device selectively provides either self-data retrieved from a constituent memory core or other-data retrieved from a memory core of another memory device during the read operation.
Abstract:
A delay-locked loop circuit includes a phase detector and a coarse-lock detector. The phase detector receives a feedback clock and a first clock to generate first and second phase detecting signals, respectively. The coarse-lock detector generates a coarse-lock signal based on changes of phase of the first and second phase detecting signals.
Abstract:
A semiconductor memory device and a method of operating the same are provided. The semiconductor memory device includes a buffer that inputs a first signal and outputs a first delay signal, a command decoder that outputs a second signal, a mask pulse signal generator that inputs the first delay signal and the second signal and generates a mask pulse signal, and a signal reshaper that inputs the first delay signal, the second signal and the mask pulse signal and reshapes the first delay signal or the second signal.
Abstract:
A clock generation device includes a flip-flop, a clock division unit, and a clock comparator. The flip-flop generates a chip selection signal synchronized with an internal clock signal. The clock division unit generates second divided clock signals based on a first divided clock signal. The clock comparator selects ones of the second divided clock signals based on the chip selection signal. The clock division unit divides the internal clock signal based on the first divided clock signal and the selected one of the second divided clock signals.
Abstract:
A memory system includes a memory controller and a memory device. The memory device includes a first converter and a first power controller. The memory device is connected to the memory controller through a channel including at least one optical signal line. The first converter converts between at least one optical signal of the at least one optical signal line and at least one internal electrical signal of the memory device. The first power controller controls power consumption of the first converter based on an operating state of the memory device.