Abstract:
Nonvolatile memory devices utilize vertically-stacked strings of nonvolatile memory cells (e.g., NAND-type strings) that can be selectively coupled to common source lines within a substrate. This selective coupling may be provided by lateral ground select transistors having different threshold voltages that account for different lateral spacings between the vertically-stacked strings of nonvolatile memory cells and the common source lines.
Abstract:
A semiconductor device includes a plurality of first insulating layers and a plurality of second layers alternately and vertically stacked on a substrate. Each of the plurality of second layers includes a horizontal electrode horizontally separated by a second insulating layer. A contact plug penetrates the plurality of first insulating layers and the second insulating layer of the plurality of second layers.
Abstract:
Provided is a method of operating a non-volatile memory device. The method includes applying a turn-on voltage to each of first and second string select transistors of a first NAND string, applying first and second voltages to third and fourth string select transistors of a second NAND string, respectively, and applying a high voltage to word lines connected with memory cells of the first and second NAND strings.
Abstract:
A three-dimensional semiconductor memory device may include a peripheral circuit structure on a peripheral substrate, a cell array structure on the peripheral circuit structure, the cell array structure including a cell array region and an outer region, a source structure on the cell array region, a base pattern on the outer region, a cell vertical structure that extends into the cell array structure in the cell array region and is electrically connected to the source structure, an outer vertical structure that extends into the cell array structure in the outer region, and a filling pattern that extends from the outer vertical structure and into the base pattern. The filling pattern defines a void, a top end of the cell vertical structure extends from the peripheral substrate by a first distance, and a top surface of the source structure extends from the peripheral substrate by a second distance.
Abstract:
A semiconductor device includes a plurality of first insulating layers and a plurality of second layers alternately and vertically stacked on a substrate. Each of the plurality of second layers includes a horizontal electrode horizontally separated by a second insulating layer. A contact plug penetrates the plurality of first insulating layers and the second insulating layer of the plurality of second layers.
Abstract:
In a method of multiple-bit programming of a three-dimensional memory device having arrays of memory cells that extend in horizontal and vertical directions relative to a substrate, the method comprises first programming a memory cell to be programmed to one among a first set of states. At least one neighboring memory cell that neighbors the memory cell to be programmed to one among the first set of states is then first programmed. Following the first programming of the at least one neighboring memory cell, second programming the memory cell to be programmed to one among a second set of states, wherein the second set of states has a number of states that is greater than the number of states in the first set of states.
Abstract:
In a method of multiple-bit programming of a three-dimensional memory device having arrays of memory cells that extend in horizontal and vertical directions relative to a substrate, the method comprises first programming a memory cell to be programmed to one among a first set of states. At least one neighboring memory cell that neighbors the memory cell to be programmed to one among the first set of states is then first programmed. Following the first programming of the at least one neighboring memory cell, second programming the memory cell to be programmed to one among a second set of states, wherein the second set of states has a number of states that is greater than the number of states in the first set of states.
Abstract:
An integrated circuit device includes a plurality of word lines, a string selection line structure stacked on the plurality of word lines, and a plurality of channel structures extending in a vertical direction through the plurality of word lines and the string selection line structure. The string selection line structure includes a string selection bent line including a lower horizontal extension portion extending in a horizontal direction at a first level higher than the plurality of word lines, an upper horizontal extension portion extending in the horizontal direction at a second level higher than the first level, and a vertical extension portion connected between the lower horizontal extension portion and the upper horizontal extension portion.
Abstract:
A semiconductor device includes gate layers stacked on a substrate in a first direction perpendicular to an upper surface of the substrate, and channel structures penetrating the gate layers and extending in the first direction, each of the channel structures includes first dielectric layers on side surfaces of the gate layers, respectively, and spaced apart from each other in the first direction, electric charge storage layers on side surfaces of the first dielectric layers, respectively, and spaced apart from each other in the first direction, a second dielectric layer extending perpendicularly to the substrate to conform to side surfaces of the electric change storage layers, and a channel layer extending perpendicularly, and each of the first dielectric layers has a first maximum length, and each of the electric charge storage layers has a second maximum length greater than the first maximum length in the first direction.
Abstract:
A semiconductor device includes; a memory stack disposed on a substrate and including a lower gate electrode, an upper gate stack including a string selection line, a vertically extending memory gate contact disposed on the lower gate electrode, and a vertically extending selection line stud disposed on the string selection line. The string selection line includes a material different from that of the lower gate electrode, and the selection line stud includes a material different from that of the memory gate contact.