Abstract:
A light-emitting device includes a light-emitting chip having a first surface and a second surface. A first light reflection pattern is formed on the second surface. A plurality of terminals are disposed to be connected to the light-emitting chip by passing through the first light reflection pattern. A second light reflection pattern is formed on side surfaces of the light-emitting chip and the first light reflection pattern. A light-transmitting pattern is formed between the light-emitting chip and the second light reflection pattern and extends between the first light reflection pattern and the second light reflection pattern. A wavelength conversion layer is formed on the first surface of the light-emitting chip.
Abstract:
A semiconductor light emitting device includes: a multilayer semiconductor body having a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, an active layer between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, and at least one recess exposing the first conductivity-type semiconductor layer, and an insulating part on an internal sidewall of the at least one recess and an upper surface of the second conductivity-type semiconductor layer. The insulating part has an insulating spacer on the internal sidewall of the recess, and a lateral surface of the insulating spacer has a surface without an angular point from an upper end to a lower end thereof.
Abstract:
A semiconductor light emitting device includes a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, a transparent electrode layer on the second conductivity-type semiconductor layer, and a reflective electrode structure on the transparent electrode layer that includes a light-transmitting insulating layer on the transparent electrode layer with insulating patterns, portions of sides of the insulating patterns being open, and a contact region of the transparent electrode layer being defined by a region between the insulating patterns, air gaps between the transparent electrode layer and the insulating patterns, the air gaps extending in the open portions of the sides of the insulating patterns, and a reflective electrode layer on the insulating patterns to cover the open portions of the insulating patterns, the reflective electrode layer being connected to the contact region of the transparent electrode layer.
Abstract:
A semiconductor light emitting device and package containing the same include: a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. A light extraction layer is disposed on the light emitting structure and includes a light-transmissive thin film layer having light transmittance, a nano-rod layer including nano-rods disposed on the light-transmissive thin film layer, and a nano-wire layer including nano-wires disposed on the nano-rod layer.
Abstract:
Provided is a semiconductor light emitting device. The semiconductor light emitting device may include: a light emitting structure comprising a first conductivity-type semiconductor layer having an upper surface divided into first and second regions, an active layer and a second conductivity-type semiconductor layer sequentially disposed on the second region of the first conductivity-type semiconductor layer; a first contact electrode disposed on the first region of the first conductivity-type semiconductor layer; a second contact electrode disposed on the second conductivity-type semiconductor layer; a first electrode pad electrically connected to the first contact electrode and having at least a portion disposed on the second contact electrode; a second electrode pad electrically connected to the second contact electrode; and a multilayer reflective structure interposed between the first electrode pad and the second contact electrode and comprising a plurality of dielectric layers which have different refractive indices and are alternately stacked.
Abstract:
A method of manufacturing a semiconductor light emitting device, includes forming a light emitting structure on a growth substrate. The light emitting structure includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer. A support substrate having one or more protrusions formed on one surface thereof is prepared. The one or more protrusions formed on the one surface of the support substrate are attached to one surface of the light emitting structure. The growth substrate is separated from the light emitting structure.
Abstract:
A semiconductor light emitting device includes a light emitting structure in which a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer are sequentially laminated, an insulating layer disposed on the light emitting structure and including first and second openings, an electrode layer disposed on the insulating layer and including first and second electrodes, and an adhesive layer disposed between the electrode layer and the insulating layer and including first and second openings. The first opening of the adhesive layer overlaps the first opening of the insulating layer and is equal to or larger than the first opening of the insulating layer. The second opening of the adhesive layer overlaps the second opening of the insulating layer and is equal to or larger than the second opening of the insulating layer.