Abstract:
Provided is a solder alloy, a solder ball, a chip solder, a solder paste and a solder joint in which discoloration is suppressed and a growth of an oxide film is suppressed under a high temperature and high humidity environment. The solder alloy contains 0.005% by mass or more and 0.1% by mass or less of Mn, 0.001% by mass or more and 0.1% by mass or less of Ge and more than 0% by mass and 4% by mass or less of Ag, and a principal ingredient of remainder is Sn.
Abstract:
A lead-free solder alloy capable of forming solder joints in which electromigration and an increase in resistance during electric conduction at a high current density are suppressed has an alloy composition consisting essentially of 1.0-13.0 mass % of In, 0.1-4.0 mass % of Ag, 0.3-1.0 mass % of Cu, a remainder of Sn. The solder alloy has excellent tensile properties even at a high temperature exceeding 100° C. and can be used not only for CPUs but also for power semiconductors.
Abstract:
With the increasing density of in-vehicle electronic circuits, not only conventional cracks at bonding interfaces such as between the substrate and the solder attachment site or a component and the solder attachment site but also novel cracking problems of cracks occurring in the Sn matrix in the interior of the bonded solder have appeared. To solve the above problem, a lead-free solder alloy with 1-4 mass % Ag, 0.6-0.8 mass % Cu, 1-5 mass % Sb, 0.01-0.2 mass % Ni and the remainder being Sn is used. A solder alloy, which not only can withstand harsh temperature cycling characteristics from low temperatures of −40° C. to high temperatures of 125° C. but can also withstand external forces that occur when riding up on a curb or colliding with a vehicle in front for long periods, and an in-vehicle electronic circuit device using the solder alloy can thereby be obtained.
Abstract:
A lead-free solder ball is provided which suppresses interfacial peeling in a bonding interface of a solder ball, fusion defects which develop between the solder ball and solder paste, and which can be used both with Ni electrodes plated with Au or the like and Cu electrodes having a water-soluble preflux applied atop Cu. The lead-free solder ball for electrodes of BGAs or CSPs consists of 1.6-2.9 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, at least one of Fe and Co in a total amount of 0.003-0.1 mass %, and a remainder of Sn.
Abstract:
A solder alloy that contains 0.005 mass % or more and 0.1 mass % or less of Mn, 0.001 mass % or more and 0.1 mass % or less of Ge, and a balance of Sn. A plurality of Ge oxides is distributed on an outermost surface side of an oxide film including Sn oxide, Mn oxide and Ge oxide by adding 0.005 mass % or more and 0.1 mass % or less of Mn, 0.001 mass % or more and 0.1 mass % or less of Ge to the solder alloy having a principal ingredient of Sn, so that it is possible to obtain the discolor-inhibiting effect even under the high-temperature and high-humidity environment.
Abstract:
Provided is a process for mounting a BGA (Ball Grid Array) or CSP (Chip Size Package) on a printed circuit board. The process includes melting and fusing together solder paste and a solder ball. The solder ball has a solder composition that includes 0.5-1.1 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, and a remainder of Sn. In the process, the solder ball is placed on an electrode of the BGA or CSP substrate and the solder paste is applied onto an opposing electrode of the printed circuit board.
Abstract:
Disclosed is a Sn—Bi—Cu—Ni series lead-free solder alloy which has a low melting point, good ductility and high tensile strength, suppresses strain in the substrate by suppressing generation of P-rich layer on a joining interface to have high shear strength and is superior in joining reliability. In order to suppress diffusion of Cu and Ni in an electrode and to maintain elongation and wettability of the solder alloy, a solder alloy has an alloy composition containing 31 to 59 mass % of Bi, 0.3 to 1.0 mass % of Cu, 0.01 to 0.06 mass % of Ni and balance of Sn.
Abstract:
Provided is a process for mounting a BGA (Ball Grid Array) or CSP (Chip Size Package) on a printed circuit board. The process includes melting and fusing together solder paste and a solder ball. The solder ball has a solder composition that includes 0.5-1.1 mass % of Ag, 0.7-0.8 mass % of Cu, 0.05-0.08 mass % of Ni, and a remainder of Sn. In the process, the solder ball is placed on an electrode of the BGA or CSP substrate and the solder paste is applied onto an opposing electrode of the printed circuit board.
Abstract:
Lead-free solder is characterized in that the lead-free solder contains Ag of 1.2 mass % through 4.5 mass %, Cu of 0.25 mass % through 0.75 mass %, Bi of 1 mass % through 5.8 mass %, Ni of 0.01 mass % through 0.15 mass % and Sn as the remainder. These addition amounts allow to be further improved the common solder properties such as wettability, shear strength properties and the like, in addition to the thermal fatigue resistance.
Abstract:
Even if the strength of a solder composition close to a SnBi eutectic composition was improved, it was brittle, so when it was used for small electronic devices such as mobile phones or notebook computers, the resistance to drop impacts when the small electronic equipment was dropped was low. Therefore, interface peeling often took place between the soldered surface and a printed circuit board, resulting in the devices being destroyed. As disclosed, when soldering using a solder paste containing a SnBi-based low-temperature solder, at least one type of solder composition selected from a Sn—Ag, a Sn—Cu, and a Sn—Ag—Cu solder composition is diffused into the solder paste by simultaneously supplying at least one type of preform selected from a Sn—Ag, a Sn—Cu, and a Sn—Ag—Cu solder composition, whereby resistance to drop impacts is improved.