Abstract:
A method and apparatus for modulating a particular light source used for laser display are provided. The apparatus includes a digital modulator digitally modulating light output from a semiconductor laser to a frequency higher than a repetition frequency required for laser image display; and a pixel brightness adjustor inserting at least one high-speed pulse into a period of the modulated output light, which is required for a single pixel, and adjusting a brightness of the pixel by adjusting the number of the inserted high-speed pulses.
Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
Provided are a reflective semiconductor optical amplifier (R-SOA) and a superluminescent diode (SLD). The R-SOA includes: a substrate; an optical waveguide including a lower clad layer, an active layer independent of the polarization of light, and an upper clad layer sequentially stacked on the substrate, the optical waveguide comprising linear, curved, and tapered waveguide areas; and a current blocking layer formed around the optical waveguide to block a flow of current out of the active layer, wherein the linear and curved waveguide areas have a single buried hetero (BH) structure, and the tapered waveguide area has a dual BH structure.
Abstract:
A tunable semiconductor laser including a Fabry-Perot filter and an electrode array is disclosed. The propagation direction of the light beam in the cavity can be consecutively shifted applying electric field or current to the electrode and tuning can consecutively performed over the wide wavelength band by the consecutive shift of the angle of the intra cavity laser beam.
Abstract:
A channel switching function is added to a wavelength division multiplexing passive optical network (WDM-PON) system, which is an access optical network system, and the potential transmission rate is increased by combining wide wavelength tunable lasers and a time division multiplexing (TDM) data structure and properly using the necessary optical components. In addition, when the wavelength of a light source or an arrayed waveguide grating (AWG) changes, the wavelength is traced and the magnitude of a transmitted signal is maximized without an additional detour line using a loop-back network structure. Furthermore, fewer thermo-electric controllers (TECs) are required for stabilizing the temperature of an optical line terminal (OLT) using wavelength tunable lasers, each laser electrically changing its wavelength.
Abstract:
The present invention relates to a semiconductor laser, having a construction capable of tuning a wavelength, in which a sampled grating distributed feedback SG-DFB structure portion and a sampled grating distributed Bragg reflector SG-DBR structure portion are integrated. In the present invention, the refraction index are varied in accordance with a current applied to the phase control area in the SG-DFB structure portion and the SG-DBR structure portion, whereby it is possible to continuously or discontinuously tune the wavelength. Therefore, in such a wavelength tunable semiconductor laser, its construction is relatively simple, and it is relatively useful to the manufacturing and mass-producing the semiconductor laser. In addition, such a wavelength tunable semiconductor laser has an excellent output optical efficiency while making it possible to tune the wavelength of the wide band.
Abstract:
A tunable semiconductor laser including a Fabry-Perot filter and an electrode array is disclosed. The propagation direction of the light beam in the cavity can be consecutively shifted applying electric field or current to the electrode and tuning can consecutively performed over the wide wavelength band by the consecutive shift of the angle of the intra cavity laser beam.
Abstract:
Provided are a reflective semiconductor optical amplifier (R-SOA) and a superluminescent diode (SLD). The R-SOA includes: a substrate; an optical waveguide including a lower clad layer, an active layer independent of the polarization of light, and an upper clad layer sequentially stacked on the substrate, the optical waveguide comprising linear, curved, and tapered waveguide areas; and a current blocking layer formed around the optical waveguide to block a flow of current out of the active layer, wherein the linear and curved waveguide areas have a single buried hetero (BH) structure, and the tapered waveguide area has a dual BH structure.
Abstract:
Provided is an external cavity laser light source. The light source includes a substrate, an optical waveguide, and a current blocking layer. The optical waveguide includes a passive waveguide layer, a lower clad layer, an active layer, and an upper clad layer that are sequentially stacked on the substrate and is divided into regions including a linear active waveguide region, a bent active waveguide region, a tapered waveguide region, and a window region. The current blocking layer was formed an outside of the active layer to reduce leakage current. The linear and bent active waveguide regions have a buried heterostructure (BH), and the tapered waveguide region and the window region have a buried ridge stripe (BRS) structure. The passive waveguide layer a width substantially equal to a maximal width of the tapered waveguide region at least in the bent active waveguide region, the tapered waveguide region, and the window region.
Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.