摘要:
A processing apparatus is disclosed which is capable of switching supplies of a raw material gas and a reducing gas alternately, while continuously forming a plasma of the reducing gas. An excitation device (12) excites a reducing gas supplied thereinto, and the excited reducing gas is supplied into a process chamber (2). A switching mechanism (20) is arranged between the excitation device (12) and the process chamber (2), and a bypass line (22) is connected to the switching mechanism (20). The switching mechanism (20) switches the flow of the excited reducing gas from the excitation device (12) between the process chamber (2) and the bypass line (22).
摘要:
A processing apparatus is disclosed which is capable of switching supplies of a raw material gas and a reducing gas alternately, while continuously forming a plasma of the reducing gas. An excitation device (12) excites a reducing gas supplied thereinto, and the excited reducing gas is supplied into a process chamber (2). A switching mechanism (20) is arranged between the excitation device (12) and the process chamber (2), and a bypass line (22) is connected to the switching mechanism (20). The switching mechanism (20) switches the flow of the excited reducing gas from the excitation device (12) between the process chamber (2) and the bypass line (22).
摘要:
A film fabrication method for forming a film over a substrate in a processing chamber includes a first film formation process and a second film formation process. In the first film formation process, (a) a first step of supplying a first source gas containing a metal-organic compound and without containing a halogen element into the chamber and then removing the first source gas from the chamber, and (b) a second step of supplying a second source gas containing hydrogen or a hydrogen compound into the chamber and then removing the second source gas from the chamber, are repeated a predetermined number of times. In the second film formation process, (c) a third step of supplying a third source gas containing a metal halide compound into the chamber and then removing the third gas from the chamber, and (d) a fourth step of supplying a plasma-activated fourth source gas containing hydrogen or a hydrogen compound into the chamber and then removing the fourth source gas from the chamber, are repeated a predetermined number of times.
摘要:
In a processing apparatus which performs a film deposition by alternately supplying a plurality of source gases, the source gases are prevented from reacting within an exhaust pipe so as to prevent the exhaust pipe from clogging due to a reaction by-product. A gas supply to a processing container is switched between a TiCl4 supply system and a NH3 supply system. Additionally, a gas exhaust from the processing container is switched between a TiCl4 exhaust system and a NH3 exhaust system. The gas exhaust is switched to the TiCl4 exhaust system when the gas supply is switched to the TiCl4 supply system, and the gas exhaust is switched to the NH3 exhaust system when the gas supply is switched to the NH3 supply system. The switching is performed by a stop valve provided to each of the supply system and the exhaust system.
摘要:
That surface of an electrode plate 20 which is opposite to a susceptor 10 has a projection shape. The electrode plate 20 is fitted in an opening 26a of shield ring 26 at a projection 20a. At this time, the thickness of the projection 20a is approximately the same as the thickness of the shield ring 26. Accordingly, the electrode plate 20 and the shield ring 26 form substantially the same plane. The major surface of the projection 20a has a diameter 1.2 to 1.5 times the diameter of a wafer W. The electrode plate 20 is formed of, for example, SiC.
摘要:
That surface of an electrode plate 20 which is opposite to a susceptor 10 has a projection shape. The electrode plate 20 is fitted in an opening 26a of shield ring 26 at a projection 20a. At this time, die thickness of the projection 20a is approximately the same as the thickness of the shield ring 26. Accordingly, the electrode plate 20 and the shield ring 26 form substantially the same plane. The major surface of the projection 20a has a diameter 1.2 to 1.5 times the diameter of a wafer W. The electrode plate 20 is formed of, for example, SiC.
摘要:
The present invention is a plasma processing method for forming a film on a substrate, the method including the steps of processing a first material gas with plasma having an electron density W and an electron temperature X, processing a second material gas with plasma having an electron density Y, which is different from the electron density W, and an electron temperature Z, which is different from the electron temperature X, and forming the film on the substrate by reacting the processed first material gas and the processed second material gas.
摘要:
A wiring structure of a semiconductor device or the like includes an interlayer insulating film having a fluorocarbon film formed on an underlayer, and a conductor buried in the interlayer insulating film. The fluorocarbon film contains nitrogen and is low in dielectric constant, excellent in reproducibility and stable.
摘要:
Provided is an amorphous carbon film having a high elastic modulus and a low thermal contraction rate with a suppressed low dielectric constant, a semiconductor device including the amorphous carbon film and a technology for forming the amorphous carbon film. Since the amorphous carbon film is formed by controlling an additive amount of Si (silicon) during film formation, it is possible to form the amorphous carbon film having a high elastic modulus and a low thermal contraction rate with a suppressed dielectric constant as low as 3.3 or less. Accordingly, when the amorphous carbon film is used as a film in the semiconductor device, troubles such as a film peeling can be suppressed.
摘要:
A modacrylic shrinkable fiber according to the present invention is containing a polymer composition obtained by mixing 50 to 99 parts by weight of a polymer (A) containing 40 wt % to 80 wt % of acrylonitrile, 20 wt % to 60 wt % of a halogen-ontaining monomer and 0 wt % to 5 wt % of a sulfonic-acid-containing monomer, and 1 to 50 parts by weight of a polymer (B) containing 5 wt % to 70 wt % of acrylonitrile, 20 wt % to 94 wt % of an acrylic ester and 1 wt % to 40 wt % of a sulfonic-acid-containing monomer containing a methallylsulfonic acid or metal salts thereof or amine salts thereof, in which a total amount of the polymer (A) and the polymer (B) is 100 parts by weight. In this way, a modacrylic shrinkable fiber that has a favorable color development property after dyeing and a high shrinkage ratio even after dyeing is obtained.