摘要:
A field effect transistor which can operate at a low threshold value includes: an n-type semiconductor region; a source region and a drain region separately formed in the n-type semiconductor region; a first insulating film formed in the semiconductor region between the source region and the drain region and containing silicon and oxygen; a second insulating film formed on the first insulating film and containing at least one material selected from Hf, Zr, and Ti and oxygen; and a gate electrode formed on the second insulating film. Ge is doped in an interface region including an interface between the first insulating film and the second insulating film, and an area density of the Ge has a peak on a first insulating film side in the interface region.
摘要:
According to one embodiment, a storage device includes a plurality of memory nodes. Each of memory nodes includes a plurality of input ports, a plurality of output ports, a selector, a packet controller and a memory. The selector outputs a packet input to the input port to one of the output ports. The packet controller controls the selector. The memory stores data. The memory nodes are mutually connected at the input ports and the output ports. The memory node has an address that is determined by its physical position. The packet controller switches the output port that outputs the packet based on information including at least a destination address of the packet and an address of the memory node having the packet controller when receiving a packet that is not addressed to the memory node having the packet controller.
摘要:
In a semiconductor device manufacturing method according to an exemplary embodiment, a sulfur-containing film containing sulfur is deposited on an n-type semiconductor, a first metal film containing a first metal is deposited on the sulfur-containing film, a heat treatment is performed to form a metal semiconductor compound film by reacting the n-type semiconductor and the sulfur-containing film, and to introduce sulfur to an interface between the n-type semiconductor and the metal semiconductor compound film being formed.
摘要:
In a semiconductor device manufacturing method according to an exemplary embodiment, a sulfur-containing film containing sulfur is deposited on an n-type semiconductor, a first metal film containing a first metal is deposited on the sulfur-containing film, a heat treatment is performed to form a metal semiconductor compound film by reacting the n-type semiconductor and the sulfur-containing film, and to introduce sulfur to an interface between the n-type semiconductor and the metal semiconductor compound film being formed.
摘要:
According to one embodiment, a storage device includes a plurality of memory nodes. Each of memory nodes includes a plurality of input ports, a plurality of output ports, a selector, a packet controller and a memory. The selector outputs a packet input to the input port to one of the output ports. The packet controller controls the selector. The memory stores data. The memory nodes are mutually connected at the input ports and the output ports. The memory node has an address that is determined by its physical position. The packet controller switches the output port that outputs the packet based on information including at least a destination address of the packet and an address of the memory node having the packet controller when receiving a packet that is not addressed to the memory node having the packet controller.
摘要:
A nonvolatile semiconductor memory device includes a tunnel insulating film, a floating gate electrode, an inter-electrode insulating film, and a control gate electrode. The tunnel insulating film is formed on a selected part of a surface of a semiconductor substrate. The floating gate electrode is formed on the tunnel insulating film. At least that interface region of the floating gate electrode, which is opposite to the substrate, is made of n-type Si or metal-based conductive material. The inter-electrode insulating film is formed on the floating gate electrode and made of high-permittivity material. The control gate electrode is formed on the inter-electrode insulating film. At least that interface region of the control gate electrode, which is on the side of the inter-electrode insulating film, is made of a p-type semiconductor layer containing at least one of Si and Ge.
摘要:
A complementary semiconductor device includes a semiconductor substrate, a first semiconductor region formed on a surface of the semiconductor substrate, a second semiconductor region formed on the surface of the semiconductor substrate apart from the first semiconductor region, an n-MIS transistor having a first gate insulating film including La and Al, formed on the first semiconductor region, and a first gate electrode formed on the gate insulating film, and a p-MIS transistor having a second gate insulating film including La and Al, formed on the second semiconductor region, and a second gate electrode formed on the gate insulating film, an atomic density ratio Al/La in the second gate insulating film being larger than an atomic density ratio Al/La in the first gate insulating film.
摘要:
It is made possible to form a silicon nitride film, an aluminum oxide film and a transition metal high-k insulation film of high quality. A manufacturing method includes: forming an insulation film having at least one kind of bonds selected out of silicon-nitrogen bonds, aluminum-oxygen bonds, transition metal-oxygen-silicon bonds, transition metal-oxygen-aluminum bonds, and transition metal-oxygen bonds on either a film having a semiconductor as a main component or a semiconductor substrate, and irradiating the insulation film with pulse infrared light having a wavelength corresponding to a maximum intensity in a wavelength region depending upon the insulation film and having a wavelength absorbed by the insulation film.
摘要:
A MIS-type semiconductor device is configured with a semiconductor substrate, and a p-type MIS transistor, and a n-type MIS transistor which is provided on the semiconductor substrate, the p-type MIS transistor including a gate electrode which is made of Ge and one element which is selected from the group consisting of Ta, V and Nb.
摘要:
After a barrier film is formed on a pad electrode, Ni particles having a diameter of 2 μm or less are selectively deposited on the barrier film, thereby forming a Ni fine particle film. Then, a bump electrode made of a solder ball is provided on the pad electrode through the Ni fine particle film. Thereafter, the bump electrode is melted by a heat treatment to join the Ni fine particle film to the bump electrode. Thus, a bump electrode structure is finished.