摘要:
According to one embodiment, a semiconductor light emitting device includes: semiconductor layers; a multilayered structural body; and a light emitting portion. The multilayered structural body is provided between the semiconductor layers, and includes a first layer and a second layer including In. The light emitting portion is in contact with the multilayered structural body between the multilayered structural body and p-type semiconductor layer, and includes barrier layers and a well layer including In with an In composition ratio among group III elements higher than an In composition ratio among group III elements in the second layer. An average lattice constant of the multilayered structural body is larger than that of the n-type semiconductor layer. Difference between the average lattice constant of the multilayered structural body and that of the light emitting portion is less than difference between that of the multilayered structural body and that of the n-type semiconductor layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part provided therebetween. The light emitting part includes a plurality of light emitting layers. Each of the light emitting layers includes a well layer region and a non-well layer region which is juxtaposed with the well layer region in a plane perpendicular to a first direction from the n-type semiconductor layer towards the p-type semiconductor layer. Each of the well layer regions has a common An In composition ratio. Each of the well layer regions includes a portion having a width in a direction perpendicular to the first direction of 50 nanometers or more.
摘要:
Certain embodiments provide a crystal growth method for nitride semiconductors, including: growing a first semiconductor layer containing InxGa1-xN (0
摘要翻译:某些实施例提供了一种用于氮化物半导体的晶体生长方法,其包括:在第一生长温度下,在衬底上生长含有In x Ga 1-x N(0
摘要:
In one embodiment, a method is disclosed for manufacturing a semiconductor light emitting device. The device includes a crystal layer including a nitride semiconductor. The crystal layer contains In and Ga atoms. The method can include forming the crystal layer by supplying a source gas including a first molecule including Ga atoms and a second molecule including In atoms onto a base body. The crystal layer has a ratio xs of a number of the In atoms to a total of the In atoms and the Ga atoms being not less than 0.2 and not more than 0.4. A vapor phase supply ratio xv of In is a ratio of a second partial pressure to a total of first and second partial pressures. The first and second partial pressures are pressure of the first and second molecules and degradation species of the first and second molecules on the source gas, respectively. (1−1/xv)/(1−1/xs) is less than 0.1.
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part provided therebetween. The light emitting part includes a plurality of light emitting layers. Each of the light emitting layers includes a well layer region and a non-well layer region which is juxtaposed with the well layer region in a plane perpendicular to a first direction from the n-type semiconductor layer towards the p-type semiconductor layer. Each of the well layer regions has a common An In composition ratio. Each of the well layer regions includes a portion having a width in a direction perpendicular to the first direction of 50 nanometers or more.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
摘要翻译:根据一个实施例,半导体发光器件包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层, 发出峰值波长为440纳米以上的光。 对第一半导体层施加拉伸应变。 第一半导体层的边缘位错密度为5×10 9 / cm 2以下。 第一半导体层和发光层之间的晶格失配因子为0.11%以下。
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
摘要翻译:根据一个实施例,半导体发光器件包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层, 发出峰值波长为440纳米以上的光。 对第一半导体层施加拉伸应变。 第一半导体层的边缘位错密度为5×10 9 / cm 2以下。 第一半导体层和发光层之间的晶格失配因子为0.11%以下。
摘要:
According to one embodiment, a vapor deposition method is disclosed for forming a nitride semiconductor layer on a substrate by supplying a group III source-material gas and a group V source-material gas. The method can deposit a first semiconductor layer including a nitride semiconductor having a compositional proportion of Al in group III elements of not less than 10 atomic percent by supplying the group III source-material gas from a first outlet and by supplying the group V source-material gas from a second outlet. The method can deposit a second semiconductor layer including a nitride semiconductor having a compositional proportion of Al in group III elements of less than 10 atomic percent by mixing the group III and group V source-material gases and supplying the mixed group III and group V source-material gases from at least one of the first outlet and the second outlet.
摘要:
According to one embodiment, a nitride semiconductor device includes a substrate and a semiconductor functional layer. The substrate is a single crystal. The semiconductor functional layer is provided on a major surface of the substrate and includes a nitride semiconductor. The substrate includes a plurality of structural bodies disposed in the major surface. Each of the plurality of structural bodies is a protrusion provided on the major surface or a recess provided on the major surface. An absolute value of an angle between a nearest direction of an arrangement of the plurality of structural bodies and a nearest direction of a crystal lattice of the substrate in a plane parallel to the major surface is not less than 1 degree and not more than 10 degrees.