摘要:
A photovoltaic device includes at least a first electrode, a first-conductivity-type layer composed of non-single-crystalline silicon, a second-conductivity-type layer composed of polycrystalline silicon, a third-conductivity-type layer composed of non-single-crystalline silicon, and a second electrode, wherein the contact surface of the first electrode with respect to the first-conductivity-type layer has a shape interspersed with a plurality of projections, and the lower limit and the upper limit of the density of the projections interspersed on the surface of the first electrode satisfy the following equations, provided that the thickness of the second-conductivity-type layer is t μm: Lower limit=0.312 exp(−0.60t) pieces/μm2 Upper limit=0.387 exp(−0.39t) pieces/μm2.
摘要:
A photovoltaic device having a semiconductor layer; front and back electrodes; and a surface protection layer adjacent to the light incident side, wherein granules of a material different from that of the surface protection layer are disposed in the surface protection layer.
摘要:
A light receiving member for electrophotography made up of an aluminum support and a multilayered light receiving layer exhibiting photoconductivity formed on the aluminum support, wherein the multilayered light receiving layer consists of a lower layer in contact with the support and an upper layer, the lower layer being made of an inorganic material containing at least aluminum atom (Al), silicon atoms (Si) and hydrogen atoms (H), and having portion in which the aluminum atoms (Al), silicon atoms (Si), and hydrogen atoms (H) are unevenly distributed across the layer thickness, the upper layer being made of a non-single-crystal material composed of silicon atoms (Si) as the matrix and at least either of hydrogen atoms (H) or halogen atoms (X) and containing at least one of carbon atoms, nitrogen atoms (N) and oxygen atoms (O) in the layer region in adjacent with the lower layer. The light receiving member for electrophotography can overcome all of the foregoing problems and exhibits extremely excellent electrical property, optical property, photoconductivity, durability, image property and circumstantial property of use.
摘要:
A photovoltaic element having a specific transparent and electrically conductive layer on a back reflecting layer, said transparent and electrically conductive layer comprising a zinc oxide material and having a light incident side surface region with a cross section having a plurality of arcs arranged while in contacted with each other, said arcs having a radius of curvature in the range of 300 .ANG. to 6 .mu.m and an angle of elevation from the center of the curvature in the range of 30 to 155.degree., and said cross section containing regions comprising said plurality of arcs at a proportion of 80% or more, compared to the entire region of the cross section.
摘要:
A microwave plasma CVD method for continuously forming a large area and length functional deposited film, the method comprises: continuously moving a substrate web in the longitudinal direction by paying out it by a pay-out mechanism and taking it up by a take-up mechanism; establishing a substantially enclosed film-forming chamber by curving and projecting the moving substrate web to form a columnar portion to be the circumferential wall of the film-forming chamber as the substrate is moving from the pay-out mechanism toward the take-up mechanism; introducing a film-forming raw material gas through a gas feeder into the film-forming chamber; and simultaneously, radiating a microwave energy in the film-forming chamber by using a microwave applicator, which is so designed that it can radiate a microwave energy in the direction parallel to the microwave propagating direction, to generate plasma in the film-forming chamber, thereby continuously forming a deposited film on the inner wall face of the continuously moving circumferential wall exposed to the plasma.
摘要:
The present invention provides photoelectric conversion elements, wherein the long wavelength sensitivity, the fill factor, and the photoelectric conversion efficiency are improved. In order to provide photoelectric conversion elements wherein light deterioration is reduced, the field durability enhanced, and the temperature characteristic improved, a p-layer composed of amorphous silicon type semiconductor containing hydrogen, an i-layer composed of amorphous silicon-germanium type semiconductor containing hydrogen and further including microcrystalline germanium, and an n-layer composed of amorphous silicon type semiconductor containing hydrogen are laminated on a substrate, the i-layer being formed at a substrate temperature from 400.degree. to 600.degree. C. by microwave plasma CVD, the particle diameter of said microcrystalline germanium ranging from 50 to 500 angstroms. Also, the content of microcrystalline germanium varies in the layer thickness direction.
摘要:
A non-single crystalline semiconductor containing at least one kind of atoms selected from the group consisting of silicon atoms (Si) and germanium atoms (Ge) as a matrix, and at least one kind of atoms selected from the group consisting of hydrogen atoms (H) and halogen atoms (X), wherein said non-single crystalline semiconductor has an average radius of 3.5 .ANG. or less and a density of 1.times.10.sup.19 (cm.sup.-3) or less as for microvoids contained therein. The non-single crystalline semiconductor excels in semiconductor characteristics and adhesion with other materials and are effectively usable as a constituent element of various semiconductor devices.
摘要:
An electrophotographic image-forming and developing method using as light receiving member an amorphous silicon light receiving member which comprises a substrate and a light receiving layer disposed on said substrate, said light receiving layer comprising a first layer capable of exhibiting a photoconductivity, a second layer capable of supporting a latent image and a third layer capable of supporting a developed image being laminated in this order on said substrate, said first layer being formed of an amorphous material containing silicon atoms as a matrix, and at least one kind of atoms selected from the group consisting of hydrogen atoms and halogen atoms, said second layer being formed of an amorphous material containing silicon atoms as a matrix, carbon atoms, atoms of an element belonging to Group III of the Periodic Table, and at least one kind of atoms selected from the group consisting of hydrogen atoms and halogen atoms, and said third layer being formed of an amorphous material containing silicon atoms as a matrix, carbon atoms and at least one kind of atoms selected from the group consisting of hydrogen atoms and halogen atoms; and using as said toner a fine particle insulating toner having a volume average particle size in the range of 4.5 to 9 um and an apparent viscosity at 100.degree. C. in the range of 1.times.10.sup.4 to 2.times.10.sup.5 poise.
摘要:
To provide a stacked photovoltaic device including: at least one pair of a first photovoltaic device and a second photovoltaic device stacked in order from a light incident side; and a selective reflection layer formed between the at least one pair of the first photovoltaic device and the second photovoltaic device and adapted to electrically connect therebetween, in which the selective reflection layer has a sheet resistance of 100 kΩ/□ or more and 100 MΩ/□ or less.
摘要:
A photovoltaic element comprising a p-type semiconductor layer and a transparent conductive layer comprised of indium tin oxide bonded to each other at a surface is provided. The sum of tin oxide content and tin content of the transparent conductive layer varies in the layer thickness direction and is lowest at the bonding surface of the p-type semiconductor layer and the transparent conductive layer. Thus provided is a photovoltaic element which has a high photoelectric conversion efficiency with decreased reduction even when exposed to an intense light for a long period.