摘要:
This disclosure provides systems, methods and apparatus for a via structure. In one aspect, an apparatus includes a substrate and a first electromechanical systems device on a surface of the substrate. The first electromechanical systems device includes a first metal layer and a second metal layer. A first via structure can be included on the surface of the substrate. The first via structure includes the first metal layer, the second metal layer, and a third metal layer. The first metal layer of the first electromechanical systems device may be the same metal layer as the first metal layer of the first via structure.
摘要:
This disclosure provides systems, methods and apparatus for fabricating thin film transistor devices. In one aspect, a substrate having a source region, a drain region, and a channel region between the source region and the drain region is provided. The substrate also includes an oxide semiconductor layer, a first dielectric layer overlying the channel region, and a first metal layer on the dielectric layer. A second metal layer is formed on the oxide semiconductor layer overlying the source region and the drain region. The oxide semiconductor layer and the second metal layer are treated to form a heavily doped n-type oxide semiconductor in the oxide semiconductor layer overlying the source region and the drain region. An oxide in the second metal layer also can be formed.
摘要:
Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate. A source contact and a drain contact are coupled to the semiconductor core of the nanowire at respective exposed portions of the semiconductor core.
摘要:
The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
摘要:
The present invention is directed to thin film transistors using nanowires (or other nanostructures such as nanoribbons, nanotubes and the like) incorporated in and/or disposed proximal to conductive polymer layer(s), and production scalable methods to produce such transistors. In particular, a composite material comprising a conductive polymeric material such as polyaniline (PANI) or polypyrrole (PPY) and one or more nanowires incorporated therein is disclosed. Several nanowire-TFT fabrication methods are also provided which in one exemplary embodiment includes providing a device substrate; depositing a first conductive polymer material layer on the device substrate; defining one or more gate contact regions in the conductive polymer layer; depositing a plurality of nanowires over the conductive polymer layer at a sufficient density of nanowires to achieve an operational current level; depositing a second conductive polymer material layer on the plurality of nanowires; and forming source and drain contact regions in the second conductive polymer material layer to thereby provide electrical connectivity to the plurality of nanowires, whereby the nanowires form a channel having a length between respective ones of the source and drain regions.
摘要:
The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into an electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.
摘要:
Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate. A source contact and a drain contact are coupled to the semiconductor core of the nanowire at respective exposed portions of the semiconductor core.
摘要:
The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into a electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.
摘要:
A nanowire capacitor and methods of making the same are disclosed. The nanowire capacitor includes a subrate and a semiconductor nanowire that is supported by the substrate. An insulator is formed on a portion of the surface of the nanowire. Additionally, an outer coaxial conductor is formed on a portion insulator and a contact coupled to the nanowire.
摘要:
Embodiments of the present invention are provided for improved contact doping and annealing systems and processes. In embodiments, a plasma ion immersion implantation (PIII) process is used for contact doping of nanowires and other nanoelement based thin film devices. According to further embodiments of the present invention, pulsed laser annealing using laser energy at relatively low laser fluences below about 100 mJ/cm2 (e.g., less than about 50 mJ/cm2, e.g., between about 2 and 18 mJ/cm2) is used to anneal nanowire and other nanoelement-based devices on substrates, such as low temperature flexible substrates, e.g., plastic substrates.
摘要翻译:提供本发明的实施例用于改进的接触掺杂和退火系统和工艺。 在实施例中,等离子体离子浸没注入(PIII)工艺用于纳米线和其它基于纳米元件的薄膜器件的接触掺杂。 根据本发明的另外的实施例,使用使用低于约100mJ / cm 2(例如,小于约50mJ / cm 2,例如约2至18mJ / cm 2)的相对低的激光能量密度的激光能量的脉冲激光退火 以在基底上退火纳米线和其它基于纳米元件的器件,例如低温柔性衬底,例如塑料衬底。