摘要:
A method of reducing an electrical charge imbalance on a wafer process surface including providing a semiconductor wafer having a process surface including an upper most first material layer; cleaning the process surface according to a wafer cleaning process including at least one of spraying and scrubbing to produce an electrical charge imbalance at the process surface; and, subjecting the process surface to a nitrogen containing plasma treatment to at least partially neutralize the electrical charge imbalance.
摘要:
A method of reducing plasma induced damage in semiconductor devices and fluorine damage to a metal containing layer including providing a semiconductor wafer including semiconductor devices including a gate oxide and a process surface including metal lines; carrying out a first high density plasma chemical vapor deposition (HDP-CVD) process to controllably produce a silicon rich oxide (SRO) layer including a relatively increased thickness at a center portion of the process surface compared to a peripheral portion of the process surface; and, carrying out a second HDP-CVD process in-situ to deposit a fluorine doped silicon dioxide layer over the SRO layer to fill a space between the metal lines.
摘要:
A method for reducing contaminants in a processing chamber 10 having chamber plasma processing region components comprising the following steps. The chamber plasma processing region components are cleaned. The chamber is then seasoned as follows. A first USG layer is formed over the chamber plasma processing region components. An FSG layer is formed over the first USG layer. A second USG layer is formed over the FSG layer. Wherein the USG, FSG, and second USG layers comprise a UFU season film. A UFU season film coating the chamber plasma processing region components of a processing chamber comprises: an inner USG layer over the chamber plasma processing region components; an FSG layer over the inner USG layer; and an outer USG layer over the FSG layer.
摘要:
A method of removing residual fluorine present in a HDP-CVD chamber which includes a high pressure seasoning process, a dry-cleaning process, and a low-pressure deposition process.
摘要:
A method of forming an FSG film comprising the following steps. A structure is provided. An FSG film is formed over the structure by an HDP-CVD process under the following conditions: no Argon (Ar)—side sputter; SiF4 flow: from about 53 to 63 sccm; an N2 flow: from about 25 to 35 sccm; and an RF power to provide a uniform plasma density.
摘要:
A method for reducing contaminants in a processing chamber 10 having chamber plasma processing region components comprising the following steps. The chamber plasma processing region components are cleaned. The chamber is then seasoned as follows. A first USG layer is formed over the chamber plasma processing region components. An FSG layer is formed over the first USG layer. A second USG layer is formed over the FSG layer. Wherein the USG, FSG, and second USG layers comprise a UFU season film. A UFU season film coating the chamber plasma processing region components of a processing chamber comprises: an inner USG layer over the chamber plasma processing region components; an FSG layer over the inner USG layer; and an outer USG layer over the FSG layer.
摘要:
A method for reducing contaminants in a processing chamber having an inner wall by seasoning the walls. The method comprising the following steps. A first USG film is formed over the processing chamber inner wall. An FSG film is formed over the first USG film. A second USG film is formed over the FSG film. A nitrogen-containing film is formed over the second USG film wherein the first USG film, the FSG film, the second USG film and the nitrogen-containing film comprise a UFUN season film.
摘要:
A method for forming a composite barrier layer that also functions as an etch stop in a damascene process is disclosed. A SiC layer is deposited on a substrate in a CVD process chamber followed by deposition of a silicon nitride layer to complete the composite barrier layer. The SiC layer exhibits excellent adhesion to a copper layer in the substrate and is formed by a method that avoids reactive Si+4 species and thereby prevents CuSiX formation. The silicon nitride layer thickness is sufficient to provide superior barrier capability to metal ions but is kept as thin as possible to minimize the dielectric constant of the composite barrier layer. The composite barrier layer provides excellent resistance to copper oxidation during oxygen ashing steps and enables a copper layer to be fabricated with a lower leakage current than when a conventional silicon nitride barrier layer is employed.
摘要翻译:公开了一种用于形成复合阻挡层的方法,该复合阻挡层也用作镶嵌工艺中的蚀刻停止。 将SiC层沉积在CVD处理室中的衬底上,随后沉积氮化硅层以完成复合势垒层。 SiC层对衬底中的铜层表现出优异的粘附性,并且通过避免反应性Si + 4+物质并由此防止CuSi X X形成的方法形成。 氮化硅层的厚度足以为金属离子提供优异的阻挡能力,但保持尽可能的薄,以使复合阻挡层的介电常数最小化。 复合阻挡层在氧化灰化步骤期间提供优异的铜氧化性能,并且与使用常规氮化硅阻挡层相比,能够以较低的漏电流制造铜层。
摘要:
A method for fabricating a dielectric layer provides for use of a carbon source material separate from a halogen source material when forming a carbon and halogen doped silicate glass dielectric layer. The use of separate carbon and halogen source materials provides enhanced process latitude when forming the carbon and halogen doped silicate glass dielectric layer. Such a carbon and halogen doped silicate glass dielectric layer having a dielectric constant greater than about 3.0 is particularly useful as an intrinsic planarizing stop layer within a damascene method. A bilayer dielectric layer construction comprising a carbon and halogen doped silicate glass and a carbon doped silicate glass dielectric layer absent halogen doping is useful within a dual damascene method.
摘要:
A method and reactant gas bypass system for carrying out a plasma enhanced chemical vapor deposition (PECVD) process with improved gas flow stability to avoid unionized reactant precursors and thickness non-uniformities the method including providing a semiconductor process wafer having a process surface within a plasma reactor chamber for carrying out at least one plasma process; supplying at least one reactant gas flow at a selected flow rate to bypass the plasma reactor chamber for a period of time to achieve a pre-determined flow rate stability; and, redirecting the at least one reactant gas flow into the plasma reactor chamber to carry out the at least one plasma process.