Abstract:
A device and method for canceling or attenuating harmonics noise without distorting the incoming signal. An exemplary device includes the use of an estimation loop to generate an artificial signal to eliminate or attenuate the influence of harmonics. The estimation loop includes a mixer adapted to produce a mixed signal by processing or combining the incoming signal and the artificial signal. The estimation loop includes an error detector, a low-pass filter, a parameter estimator, and a numerically controlled oscillator. The parameter estimator produces information relating to the phase, frequency, and amplitude of an incoming harmonics spur and will be used by the numerically controlled oscillator to generate the artificial signal. If the mixed signal contains relatively low levels of harmonics residuals, the mixed signal is produced at the output in lieu of the incoming signal.
Abstract:
A decoder includes a transport engine configured to receive programs and extract timing information and timestamps embedded in the programs. An adder is configured to add a set of timing offsets to the sets of timing information to adjust the timing information from a first time basis to a second time basis. Sums of the timing offsets and the timing information are referred to the mapped-timing information. A correction engine is configured to update the timing offsets as timing information is encountered in the programs, and an offset register is configured to: receive the timing offsets, store the timing offsets, and transfer the timing offsets to the adder. The adder is also configured to add the timing offsets to the timestamps to adjust the time basis of the timestamps from the first time basis to the second time basis. A program is decoder configured to receive the adjusted timestamps to decode the programs.
Abstract:
A system for facilitating high-speed access and recording is provided. The system includes a demodulator, an buffer memory and a hard disk. During a write cycle, the demodulator is used to receive one or more content streams. The content streams received by the demodulator are first stored in the buffer memory. When the buffer memory has reached its storage capacity, its contents are then transferred to the hard disk for storage. During a read cycle, contents from the hard disk are read and then stored in the buffer memory. Other components of the system can then access the read-out contents from the buffer memory. The amount of contents retrieved from the hard disk and stored in the buffer memory may be more than what is requested depending on the application requesting the contents. The hard disk further includes different zones. There are two types of zones, namely, high-speed zone and random-access zone. The two different types of zones allow for a number of operating modes, namely, the high-speed mode, the random-access mode and the buffer-cleaning mode. In the high-speed mode, contents from the buffer memory are transferred to the high-speed zone in a continuous manner regardless of the nature or classification of the contents. In the random-access mode, contents from the buffer memory are respectively transferred to the appropriate locations in the random-access zone based on the nature or classification of the contents. In the buffer-cleaning mode, contents stored in the high-speed zone are transferred to appropriate locations in the random-access zone based on the nature or classification of the contents.
Abstract:
A method and circuitry for implementing digital multi-channel demodulation circuits. More particularly, embodiments of the present invention provide a digital multi-channel demodulator circuit. The demodulator includes a frequency-block down-converter that receives a multi-channel analog RF signal and shifts the multi-channel analog RF signal to a lower frequency band. An ADC receives the multi-channel analog RF signal from the frequency-block down-converter and converts the multi-channel analog RF signal to a multi-channel digital RF signal. A digital channel demultiplexer receives the multi-channel digital RF signal from the ADC and demultiplexes the multi-channel digital RF signal into separate digital RF channels.
Abstract:
Systems and methods for performing high-speed multi-channel forward error correction using external DDR SDRAM is provided. According to one exemplary aspect, an interleaver/deinterleaver performs both read and write accesses to the DDR SDRAM that are burst-oriented by hiding active and precharge cycles in order to achieve high data rate operations. The interleaver/deinterleaver accesses data in the DDR SDRAM as read blocks and write blocks. Each block includes two data sequences. Each data sequence further includes a predetermined number of data words to be interleaved/deinterleaved. The PRECHARGE and ACTIVE command for one data sequence is issued when a preceding data sequence is being processed. Data in one read/write data sequence has the same row address within the same bank of the DDR SDRAM.
Abstract:
A system for optimizing bandwidth of a video-on-demand system is provided. According to one aspect of the system, upon receiving a request from a first subscriber for a program, the system delivers the program to the first subscriber via a first communication channel. Upon receiving a request from a second subscriber for the same program, the system delivers only a beginning portion of the program to the second subscriber via a second communication channel and at the same time records a remaining portion of the program from the first communication channel. At the appropriate time, the recorded remaining portion of the program are shown to the second subscriber.
Abstract:
A digital automatic gain control circuit is disclosed. The circuit includes a selector, a scaler, a detector, a gain adjustor and a controller. In one exemplary aspect, the selector receives an input signal having two components, namely, the in-phase (I) and quadrature (Q) components, in digital form. The selector then selects a subset of bits from each component based on a control signal provided by the controller. The two subsets are then forwarded to the scaler. The scaler then multiplies the two subsets respectively against a gain value to generate two multiplication results. A portion of each multiplication result is then provided as output by the scaler. The gain value and the subset selection are periodically adjusted in response to the scaler output. The adjustments with respect to the gain value and the subset selection are effectuated collectively by the detector, the gain adjustor and the controller.
Abstract:
A deinterleaver for performing high-speed multi-channel forward error correction using external SDRAM is provided. According to one exemplary aspect, the deinterleaver performs both read and write accesses to the SDRAM that are burst-oriented by hiding active and precharge cycles in order to achieve high data rate operations. The data bus length of the SDRAM is designed to be twice the deinterleaving symbol size thereby allowing bandwidth to be increased. The deinterleaver accesses data in the SDRAM as read blocks and write blocks. Each block includes a predetermined number of data words to be interleaved/deinterleaved. The ACTIVE command for one block is issued when a preceding block is being processed. Data in one read/write block has the same row address within the same bank of the SDRAM.
Abstract:
A method and system for transferring a transport stream, such as from a satellite receiver to a networked computer system, are provided. The transport stream is parsed to derive multiple elementary streams including associated program identifiers, which are used to determine corresponding transfer locations in a host memory. Direct memory access transfers of the multiple elementary streams are then performed to the corresponding transfer locations in the host memory.
Abstract:
Error correction coding across multiple channels is provided in multi-channel transmission systems. Specifically, redundancy is provided by selecting a portion of original data from each of a plurality of original channels, performing at least one encoding operation using the portions of original data to produce at least one portion of redundancy data, including the portion of redundancy data in at least one redundancy channel, and transmitting the redundancy channel along with the original channels. Error correction is achieved by receiving at least one redundancy channel and a plurality of original channels, selecting a portion of redundancy data from the redundancy channel, selecting a portion of original data from each of the original channels, and performing at least one decoding operation using the portion of redundancy data and the portions of original data to correct at least one error in the portions of original data.