Abstract:
An ion beam source includes an ion source, ion accelerator and focusing system, and a velocity filter with a deflection plate pair. The velocity filter provides for dispersion of ions according to their charge, mass and velocity. The ion source includes a nonconducting barrel, a filament mounted in the barrel and an anode enclosing the barrel opening except for a source aperture. Filament current is arranged to provide an electron current to the anode, this electron current ionizes the charge material thus forming a plasma cloud for ejecting into the focusing and lens system, and then into a velocity filter causing separation of ion beam.
Abstract:
Among other things, we describe methods and apparatus for the ionization of target molecular analytes of interest, e.g., for use in mass spectrometry. In some implementations, a thin molecular stream is emitted in either single or a split mode and encounters both an electron-impact ion source and trochoidal electron monochromator placed sequentially or coincidentally. The first ion source emits high-energy electrons (˜70 eV) to generate characteristic positively-charged mass fragment spectra while the second source emits low-energy electrons in a narrow bandwidth to generate negative molecular ions or other ions via electron capture ionization. The dual ion source may be coupled to analytical instruments such as a gas chromatograph and to any number of mass analyzers such as a polarity switching quadrupole mass analyzer or to multiple mass analyzers.
Abstract:
A method and apparatus for implanting dopant material into a substrate of semiconductive material in a preselected pattern without utilizing a mask comprises the use of a source template which is formed of the desired dopant material in the configuration of the pattern to be implanted. Ions of the dopant material are sputtered from the template by bombardment with an ionized gas, and these dopant ions are then filtered from unwanted ion species and accelerated into the substrate while remaining in the original template pattern.
Abstract:
In an ionic microanalyzer, the energy filtering of the ions of the beam providing an image of a sample is effected by means of a spherical capacitor, suitably associated with the magnetic deflector used for the momentum-to-charge ratio filtering, through an intermediate lens system.
Abstract:
Ion-molecule-reaction—mass spectrometry (IMR-MS) device, comprising an ion source, an adjacent reaction chamber and a mass spectrometer subsequent to the reaction chamber, wherein the reaction chamber comprises an RF device for creating a temporally changing electromagnetic field and wherein an adjustable reduced electric field strength (E/N) can be applied to the reaction chamber, characterized by an input device for entering a desired reduced electric field strength (E/N) by an operator when operating said IMR-MS device for analyzing a sample, and a controlling device that operates the IMR-MS device by adjusting the settings of the IMR-MS device relating to a defined data set of a pseudo reduced electric field strength (PE/N1,2) for the entered reduced electric field strength (E/N), wherein the pseudo reduced electric field strength (PE/N1,2) has been determined by analyzing a first analyte (A1) in the IMR-MS device, wherein intensity signals (RS1) of at least two product ions of the analyte (A1) are recorded and wherein the settings of the IMR-MS device are changed until the measured intensity signal (IS1) ratios of the at least two product ions match reference intensity signal (RS1) ratios within a given tolerance level of the at least two product ions determined in an IMR-MS device comprising an ion source, an adjacent reaction chamber with a DC-drift tube and a mass spectrometer subsequent to the reaction chamber, wherein the reaction chamber is operated only with an activated DC-drift tube at a certain actual reduced electric field strength (Ea1/N), wherein these settings of the IMR-MS device relating to the pseudo reduced electric field strength (PE/N1) are stored in the controlling device, wherein the controlling device controls said IMR-MS device by performing analysis of the sample with the settings corresponding to the pseudo reduced electric field strengths (PE/N1).
Abstract:
A microanalyser operating by secondary ion emission and comprising a double magnetic-prism for deflecting the ions according to their ''''momentum-to-charge'''' ratio and electrostatic means for filtering the ions according to their ''''energy-tocharge'''' ratio. An element is provided to operate either as an electrostatic mirror allowing the production of images through ion microscopy or as a transmitting and filtering device incorporated in the make-up of a double-focussing mass spectrometer in accordance with the magnetic prism and an electrostatic condenser.
Abstract:
The present invention relates to microanalysers and more particularly to microanalysers making use of the secondary ion emission for producing, by means of a corpuscular optical system which combines ion optics and mass spectrography, ''''characteristic images'''' of the surface of the sample which indicate the map of distribution of its various elements or isotopes.