Abstract:
A vibration element includes a base and a vibrating arm extending from the base. The vibrating arm includes an arm positioned between the base and a weight. A weight film is disposed on the weight. The weight has a first principal surface and a second principal surface in a front and back relationship with respect to a center plane of the arm. A center of gravity of the weight is located between the first principal surface and the center plane of the arm. A center of gravity of the weight film is located between the second principal surface and the center plane of the arm.
Abstract:
An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
Abstract:
An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
Abstract:
A resonator device includes a resonator supported by a substrate as a base. The resonator is connected to a wire extending from the substrate by wire bonding so as to be suspended in midair and supported over the supporting substrate.
Abstract:
A mini-oscillator assembly (20) is formed by initially bonding ribbon leads (34) to contact pads (32) on a planar substrate (26) of a hybrid integrated circuit device (22) such that the leads project from the substrate in the plane thereof. Inverted V-shaped notches (50) then are formed in the ribbon leads (34) as the leads are cut to length. The ribbon leads (34) then are formed over the substrate (26) so that the V-shaped notches (50) face away from the substrate (26) and are aligned with one another on opposite sides of a plane extending from an imaginary line (52) extending between and interconnecting the substrate contact pads (32). Wire leads (38) of a crystal resonator plate (24) then are soldered in the V-shaped notches (50) to form the mini-oscillator assembly (20).
Abstract:
A vibrator element includes a vibrating section having a rectangular shape in a plan view and including a first principal surface, a second principal surface, and an excitation portion sandwiched by a first excitation electrode and a second excitation electrode and making a thickness-shear vibration, a coupling arm extending from a corner part of the vibrating section in a first direction, and a supporting arm having a side surface at one end part side coupled to the coupling arm and extending in a second direction crossing the first direction, wherein the supporting arm includes a first supporting electrode electrically coupled to the first excitation electrode and bonded to a container via an adhesive member, and a width of the coupling arm along the second direction is four or more times a thickness of the excitation portion along a third direction crossing the first direction and the second direction and equal to or smaller than a length from an end part of the supporting arm at the coupling arm side to the first supporting electrode along the second direction.
Abstract:
An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.170 GHz to 5.835 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
Abstract:
An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
Abstract:
A piezoelectric resonator (12) is embedded within an electrically insulating substrate assembly (36), such as a multilayer printed circuit board. Electrical conductors (22,24) extend from electrodes of the resonator (12) through holes (32) in upper and lower layers (26,29) of the substrate assembly (36) and connect to electrical traces (34). The lower layer (29) has a pocket which forms a cavity (38) within the substrate assembly (36) adapted to contain the piezoelectric resonator (12). The conductors (22,24) support the resonator (12) such that the resonator (12) does not contact the assembly (36). As the resonator is substantially larger than associated electrical components, embedding it within a substrate eliminates the size penalty that is normally required to mount a large piezoelectric resonator.