Abstract:
Matriz bi-estructurada para purificación y manejo de reactivos sólidos que comprende al menos un soporte sólido de polímero recubierto con al menos un polímero hidrosoluble y procedimientos de obtención. El soporte sólido puede ser, entre otros, espuma de poliuretano reticulada o una punta de micropipetas. El polímero hidrosoluble puede ser, entre otros, polivinilalcohol, agarosa, hidroxietilcelulosa o combinaciones de los mismos. La matriz puede comprender además un polímero producido a partir de metacrilato de glicidilo (GMA), dimetil acrilamida (DMAAm), 2-hidroxietil metacrilato, ácido metaacrílico o combinaciones de los mismos.
Abstract:
Disclosed herein is a method comprising: depositing a second electrode of each of a plurality of electrode pairs onto a substrate, through an opening of one or more resist layers; depositing a strip of a sacrificial layer directly on the second electrode through the same opening of the one or more resist layer; depositing a first electrode of each of the plurality of electrode pairs directly on the strip of the sacrificial layer through the same opening of the one or more resist layer; and forming a nanogap channel by removing the strip of the sacrificial layer; wherein the strip of the sacrificial layer is sandwiched between and in direct contact with the first electrode and the second electrode before the strip is removed, and wherein at least a portion of the first electrode directly faces at least a portion of the second electrode.
Abstract:
A microfluidic device includes: a first microfluidic channel; a second microfluidic channel extending along the first microfluidic channel; and a first array of islands separating the first microfluidic channel from the second microfluidic channel, in which each island is separated from an adjacent island in the array by an opening that fluidly couples the first microfluidic channel to the second microfluidic channel, in which the first microfluidic channel, the second microfluidic channel, and the islands are arranged so that a fluidic resistance of the first microfluidic channel increases relative to a fluidic resistance of the second microfluidic channel along a longitudinal direction of the first microfluidic channel such that, during use of the microfluidic device, a portion of a fluid sample flowing through the first microfluidic channel passes through one or more of the openings between adjacent islands into the second microfluidic channel.
Abstract:
본 발명은 표적 유전자를 증폭시켜 유로를 선택적으로 막음으로써 육안으로 식별이 가능한 표적 유전자, 특히 병원균 유전자를 검출하는 미세 유동 장치 및 이를 이용한 검출 방법을 제공한다. 따라서 본 발명은 복잡한 기계 장치 없이도 단일 표적 유전자, 예컨대 단일 병원균 또는 동시에 여러 표적 유전자, 예컨대 여러 병원균을 간편하게 검출 할 수 있다.
Abstract:
An extrudable hydrogel composition useful for making a three-dimensional organ construct includes a cross-linkable prepolymer, a post-deposition crosslinking group, optionally, an initiator that catalyzes the reaction between the prepolymer and said the crosslinking group; live cells ( e.g. , plant, animal, or microbial cells), optionally at least one one growth factor, and optionally water to balance. Methods of using the same and products so made are also described.
Abstract:
본 발명의 실시예에 따라, 미세유체 칩, 이의 제조 방법 및 이를 이용한 분석 장치가 제공된다. 상기 미세유체 칩은 유체가 유입되는 유입부, 상기 유체가 이동하는 유체 채널 및 상기 유체가 배출되는 유출부를 포함하는 기판; 및 상기 기판에 부착되어, 상기 유입부, 상기 유출부 및 상기 유체 채널 중 적어도 하나를 외부로부터 보호하는 필름을 포함하며, 상기 유입부 및 상기 유출부는 기판의 표면을 관통하여 구현되고, 상기 유체 채널은 상기 기판의 표면으로부터 함몰되어 구현될 수 있다.
Abstract:
Bare porous polymer monoliths, fluidic chips, methods of incorporating bare porous polymer monoliths into fluidic chips, and methods for functionalizing bare porous polymer monoliths are described. Bare porous polymer monoliths may be fabricated ex situ in a mold. The bare porous polymer monoliths may also be functionalized ex situ. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include inserting the monoliths into channels of channel substrates of the fluidic chips. Incorporating the bare preformed porous polymer monoliths into the fluidic chips may include bonding a capping layer to the channel substrate. The bare porous polymer monoliths may be mechanically anchored to channel walls and to the capping layer. The bare porous polymer monoliths may be functionalized by ex situ immobilization of capture probes on the monoliths. The monoliths may be functionalized by direct attachment of chitosan.
Abstract:
An embodiment of a reagent container includes a bottle with a pipe to reduce the effects of reagent sloshing. The bottle has an elongated base and an opposed cover connected by side walls and an end wall. A flat platform surrounded by a raised rim lies in the base opposite an opening in the cover. A ribbed pipe frictionally fits within the bottle opening and may attach to the anchor region leaving vent passages around the pipe. The pipe includes an aperture adjacent to the anchor region and oriented toward the end wall so that sloshed fluid has only a small effect on the level of reagent in the pipe during transfers. A modified blow molding process produces the anchor region by extending a pin a predetermined distance into a mold while the molded material is still plastic.
Abstract:
Provided herein is a fluidic cartridge having a body comprising a malleable material and a layer comprising a deformable material bonded to a surface of the body that seals one or more fluidic channels that communicate with one or more valve bodies formed in a surface of the body. The valve can be closed by applying pressure to the deformable material sufficient to crush and close off a fluidic channel in the body. Also provided are a cartridge interface configured to engage the cartridge. Also provided is a system including a cartridge interface and methods of using the cartridge and system.