Abstract:
The use of atomic layer deposition (ALD) to form a conductive titanium nitride layer produces a reliable structure for use in a variety of electronic devices. The structure is formed by depositing titanium nitride by atomic layer deposition onto a substrate surface using a titanium-containing precursor chemical such as TDEAT, followed by a mixture of ammonia and carbon monoxide or carbon monoxide alone, and repeating to form a sequentially deposited TiN structure. Such a TiN layer may be used as a diffusion barrier underneath another conductor such as aluminum or copper, or as an electro-migration preventing layer on top of an aluminum conductor. ALD deposited TiN layers have low resistivity, smooth topology, high deposition rates, and excellent step coverage and electrical continuity.
Abstract:
Embodiments of the present disclosure generally relate to methods for forming a dielectric material on a substrate, and more specifically, to methods for forming a high-k dielectric layer in an electronic device. In one embodiment, the method includes depositing a high-k dielectric layer on a substrate and fluorinating the deposited high-k dielectric layer. The fluorinating the high-k dielectric layer includes exposing the high-k dielectric layer to a fluorine containing plasma at temperature between about 200 degrees Celsius and about 550 degrees Celsius. At this temperature range, the fluorine radicals form fluorine bonds at the interface between the high-k dielectric layer and the substrate without etching any materials.
Abstract:
Embodiments of the disclosure generally provide methods of forming a capacitor with high capacitance and low leakage as well as a good interface control for thin film transistor (TFT) applications. In one embodiment, a thin film transistor structure includes a capacitor formed in a thin film transistor device. The capacitor further includes a common electrode disposed on a substrate, a dielectric layer formed on the common electrode and a pixel electrode formed on the dielectric layer. An interface protection layer formed between the common electrode and the dielectric layer, or between the dielectric layer and the pixel electrode. A gate insulating layer fabricated by a high-k material may also be utilized in the thin film transistor structure.
Abstract:
In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
Abstract:
An integrated circuit is provided with a metal gate NMOS transistor (130) with a high-k first gate dielectric (108) on a high quality thermally grown interface dielectric (106) and with a metal gate PMOS transistor (132) with a high-k last gate dielectric (136) on a chemically grown interface dielectric (134). Process flows are provided for forming an integrated circuit with a metal gate NMOS transistor (130) with a high-k first gate dielectric (108) on a high quality thermally grown interface dielectric (106) and with a metal gate PMOS transistor (132) with a high-k last gate dielectric (136) on a chemically grown interface dielectric (134).
Abstract:
A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. A metal oxide second electrode layer is formed above the dielectric layer. The metal oxide second electrode layer has a crystal structure that is compatible with the crystal structure of the dielectric layer. Optionally, a second electrode bulk layer is formed above the metal oxide second electrode layer.
Abstract:
A method of forming a capacitor includes depositing a dielectric metal oxide layer of a first phase to a thickness no greater than 75 Angstroms over an inner conductive capacitor electrode material. The first phase dielectric metal oxide layer has a k of at least 15. Conductive RuO2 is deposited over and into physical contact with the dielectric metal oxide layer. Then, the RuO2 and the dielectric metal oxide layer are annealed at a temperature below 50O0C. The RuO2 in physical contact with the dielectric metal oxide during the annealing facilitates a change of the dielectric metal oxide layer from the first phase to a second crystalline phase having a higher k than the first phase. The annealed dielectric metal oxide layer is incorporated into a capacitor dielectric region of a capacitor construction. Other implementations are disclosed.