TRANSISTOR STRUCTURE INCLUDING A METAL SILICIDE GATE AND CHANNEL IMPLANTS AND METHOD OF MANUFACTURING THE SAME
    73.
    发明申请
    TRANSISTOR STRUCTURE INCLUDING A METAL SILICIDE GATE AND CHANNEL IMPLANTS AND METHOD OF MANUFACTURING THE SAME 审中-公开
    包括金属硅化物门和通道植入物的晶体管结构及其制造方法

    公开(公告)号:WO2004021429B1

    公开(公告)日:2004-07-08

    申请号:PCT/US0326815

    申请日:2003-08-28

    Abstract: The present invention teaches a method of forming a MOSFET transistor having a silicide gate which is not subject to problems produced by etching a metal containing layer when forming the gate stack structure. A gate stack is formed over a semiconductor substrate comprising a gate oxide layer (201), a conducting layer (202), and a first insulating layer (203). Sidewall spacers (209a, 209b) are formed adjacent to the sides of the gate stack structure and a third insulating layer (211) is formed over the gate stack and substrate. The third insulating layer (211) and first insulating layer (203) are removed to expose the conducting layer and, at least one unetched metal-containing layer is formed over and in contact with the conducting layer. The gate stack structure then undergoes a siliciding process with different variations to finally form a silicide gate.

    Abstract translation: 本发明教导了一种形成具有硅化物栅的MOSFET晶体管的方法,其在形成栅极堆叠结构时不会产生通过蚀刻含金属层产生的问题。 在包括栅极氧化物层(201),导电层(202)和第一绝缘层(203)的半导体衬底之上形成栅堆叠。 侧壁间隔物(209a,209b)与栅极堆叠结构的侧面相邻地形成,并且在栅极堆叠和衬底上形成第三绝缘层(211)。 去除第三绝缘层(211)和第一绝缘层(203)以暴露导电层,并且至少一个未蚀刻的含金属层形成在导电层上并与导电层接触。 然后,栅极堆叠结构经历不同变化的硅化处理,最终形成硅化物栅极。

    TRANSISTOR STRUCTURE INCLUDING A METAL SILICIDE GATE AND CHANNEL IMPLANTS AND METHOD OF MANUFACTURING THE SAME
    74.
    发明申请
    TRANSISTOR STRUCTURE INCLUDING A METAL SILICIDE GATE AND CHANNEL IMPLANTS AND METHOD OF MANUFACTURING THE SAME 审中-公开
    包含金属硅化物栅极和沟道植入物的晶体管结构及制造该晶体管的方法

    公开(公告)号:WO2004021429A1

    公开(公告)日:2004-03-11

    申请号:PCT/US2003/026815

    申请日:2003-08-28

    Abstract: The present invention teaches a method of forming a MOSFET transistor having a silicide gate which is not subject to problems produced by etching a metal containing layer when forming the gate stack structure. A gate stack is formed over a semiconductor substrate comprising a gate oxide layer (201), a conducting layer (202), and a first insulating layer (203). Sidewall spacers (209a, 209b) are formed adjacent to the sides of the gate stack structure and a third insulating layer (211) is formed over the gate stack and substrate. The third insulating layer (211) and first insulating layer (203) are removed to expose the conducting layer and, at least one unetched metal-containing layer is formed over and in contact with the conducting layer. The gate stack structure then undergoes a siliciding process with different variations to finally form a silicide gate.

    Abstract translation: 本发明教导了一种形成具有硅化物栅极的MOSFET晶体管的方法,所述硅化物栅极在形成栅极堆叠结构时不会受到通过蚀刻含金属层产生的问题的影响。 栅极叠层形成在包括栅极氧化物层(201),导电层(202)和第一绝缘层(203)的半导体衬底之上。 在栅叠层结构的侧面附近形成侧壁间隔物(209a,209b),并且在栅叠层和衬底上形成第三绝缘层(211)。 去除第三绝缘层(211)和第一绝缘层(203)以暴露导电层,并且在导电层上方并且与导电层接触形成至少一个未被蚀刻的含金属层。 然后,栅极堆叠结构经历具有不同变化的硅化工艺,以最终形成硅化物栅极。

    GE NANO WIRE TRANSISTOR WITH GAAS AS THE SACRIFICIAL LAYER
    76.
    发明申请
    GE NANO WIRE TRANSISTOR WITH GAAS AS THE SACRIFICIAL LAYER 审中-公开
    具有GAAS的GE NANO线状晶体管作为绝对层

    公开(公告)号:WO2017003407A1

    公开(公告)日:2017-01-05

    申请号:PCT/US2015/038190

    申请日:2015-06-27

    Abstract: An apparatus including a three-dimensional semiconductor body including a channel region and junction regions disposed on opposite sides of the channel region, the three-dimensional semiconductor body including a plurality of nanowires including a germanium material disposed in respective planes separated in the junction regions by a second material, wherein a lattice constant of the second material is similar to a lattice constant of the germanium material; and a gate stack disposed on the channel region, the gate stack including a gate electrode disposed on a gate dielectric. A method of including forming a plurality of nanowires in separate planes on a substrate, each of the plurality of nanowires including a germanium material and separated from an adjacent nanowire by a sacrificial material; disposing a gate stack on the plurality of nanowires in a designated channel region, the gate stack including a dielectric material and a gate electrode.

    Abstract translation: 一种包括三维半导体本体的装置,包括沟道区和设置在沟道区的相对侧的结区,所述三维半导体本体包括多个纳米线,所述多个纳米线包括设置在通过所述接合区域分离的各个平面中的锗材料, 第二材料,其中所述第二材料的晶格常数类似于所述锗材料的晶格常数; 以及设置在所述沟道区上的栅极堆叠,所述栅极堆叠包括设置在栅极电介质上的栅电极。 一种包括在衬底上的分离平面中形成多个纳米线的方法,所述多个纳米线中的每一个包括锗材料并通过牺牲材料与相邻的纳米线分离; 在指定的沟道区域中的多个纳米线上设置栅极堆叠,所述栅极堆叠包括电介质材料和栅电极。

    NON-VOLATILE STORAGE ELEMENT WITH SUSPENDED CHARGE STORAGE REGION
    79.
    发明申请
    NON-VOLATILE STORAGE ELEMENT WITH SUSPENDED CHARGE STORAGE REGION 审中-公开
    具有暂停充电储存区域的非挥发性储存元件

    公开(公告)号:WO2015112404A1

    公开(公告)日:2015-07-30

    申请号:PCT/US2015/011481

    申请日:2015-01-14

    Abstract: Suspended charge storage regions are utilized for non-volatile storage to decrease parasitic interferences and increase charge retention in memory devices. Charge storage regions are suspended from an overlying intermediate dielectric material. The charge storage regions include an upper surface and a lower surface that extend in the row and column directions. The upper surface of the charge storage region is coupled to the overlying intermediate dielectric material. The lower surface faces the substrate surface and is separated from the substrate surface by a void. The charge storage region includes a first vertical sidewall and a second vertical sidewall that extend in the column direction and a third vertical sidewall and fourth vertical sidewall that extend in the row direction. The first, second, third, and fourth vertical sidewall are separated from neighboring features of the non-volatile memory by the void. The void may include a vacuum, air, gas, or a liquid.

    Abstract translation: 悬浮电荷存储区域用于非易失性存储以减少寄生干扰并增加存储器件中的电荷保持。 电荷存储区域从覆盖的中间介电材料悬浮。 电荷存储区域包括在行和列方向上延伸的上表面和下表面。 电荷存储区域的上表面与上覆的中间介电材料耦合。 下表面面向基板表面,并通过空隙与基板表面分离。 电荷存储区包括在列方向上延伸的第一垂直侧壁和第二垂直侧壁以及沿行方向延伸的第三垂直侧壁和第四垂直侧壁。 第一,第二,第三和第四垂直侧壁通过空隙与非易失性存储器的相邻特征分离。 空隙可以包括真空,空气,气体或液体。

Patent Agency Ranking