Abstract:
A structure and method are provided in which an n-type field effect transistor (NFET) and a p-type field effect transistor (PFET) each have a channel region disposed in a single-crystal layer of a first semiconductor and a stress is applied at a first magnitude to a channel region of the PFET but not at that magnitude to the channel region of the NFET. The stress is applied by a layer of a second semiconductor which is lattice-mismatched to the first semiconductor. The layer of second semiconductor is formed over the source and drain regions and extensions of the PFET at a first distance from the channel region of the PFET and is formed over the source and drain regions of the NFET at a second, greater distance from the channel region of the NFET, or not formed at all in the NFET.
Abstract:
A method (and resulting structure) of forming a semiconductor device, includes implanting, on, a substrate, a dopant and at least one species, annealing the substrate, the at least one species retarding a diffusion of the dopant during the annealing of the substrate.
Abstract:
The present invention teaches a method of forming a MOSFET transistor having a silicide gate which is not subject to problems produced by etching a metal containing layer when forming the gate stack structure. A gate stack is formed over a semiconductor substrate comprising a gate oxide layer (201), a conducting layer (202), and a first insulating layer (203). Sidewall spacers (209a, 209b) are formed adjacent to the sides of the gate stack structure and a third insulating layer (211) is formed over the gate stack and substrate. The third insulating layer (211) and first insulating layer (203) are removed to expose the conducting layer and, at least one unetched metal-containing layer is formed over and in contact with the conducting layer. The gate stack structure then undergoes a siliciding process with different variations to finally form a silicide gate.
Abstract:
The present invention teaches a method of forming a MOSFET transistor having a silicide gate which is not subject to problems produced by etching a metal containing layer when forming the gate stack structure. A gate stack is formed over a semiconductor substrate comprising a gate oxide layer (201), a conducting layer (202), and a first insulating layer (203). Sidewall spacers (209a, 209b) are formed adjacent to the sides of the gate stack structure and a third insulating layer (211) is formed over the gate stack and substrate. The third insulating layer (211) and first insulating layer (203) are removed to expose the conducting layer and, at least one unetched metal-containing layer is formed over and in contact with the conducting layer. The gate stack structure then undergoes a siliciding process with different variations to finally form a silicide gate.
Abstract:
An integrated circuit transistor may be fabricated having a reinforced airgap spacer formed as a gate sidewall spacer, such that the reinforced airgap spacer is positioned between a gate electrode and a source contact and/or a drain contact of the integrated circuit transistor. As the dielectric constant of gaseous substances is significantly lower than that of a solid or a semi-solid dielectric material, the reinforced airgap spacer may result in minimal capacitive coupling between the gate electrode and the source contact and/or the drain contact, which may reduce circuit delay of the integrated circuit transistor.
Abstract:
An apparatus including a three-dimensional semiconductor body including a channel region and junction regions disposed on opposite sides of the channel region, the three-dimensional semiconductor body including a plurality of nanowires including a germanium material disposed in respective planes separated in the junction regions by a second material, wherein a lattice constant of the second material is similar to a lattice constant of the germanium material; and a gate stack disposed on the channel region, the gate stack including a gate electrode disposed on a gate dielectric. A method of including forming a plurality of nanowires in separate planes on a substrate, each of the plurality of nanowires including a germanium material and separated from an adjacent nanowire by a sacrificial material; disposing a gate stack on the plurality of nanowires in a designated channel region, the gate stack including a dielectric material and a gate electrode.
Abstract:
A sacrificial cap is grown on an upper surface of a conductor. A dielectric spacer is against a side of the conductor. An upper dielectric side spacer is formed on a sidewall of the sacrificial cap. The sacrificial cap is selectively etched, leaving a cap recess, and the upper dielectric side spacer facing the cap recess. Silicon nitride is filled in the cap recess, to form a center cap and a protective cap having center cap and the upper dielectric spacer.
Abstract:
Species are supplied to a flowable layer over a substrate. A property of the flowable layer is modified by implanting the species to the flowable layer. The property comprises a density, a stress, a film shrinkage, an etch selectivity, or any combination thereof.
Abstract:
Suspended charge storage regions are utilized for non-volatile storage to decrease parasitic interferences and increase charge retention in memory devices. Charge storage regions are suspended from an overlying intermediate dielectric material. The charge storage regions include an upper surface and a lower surface that extend in the row and column directions. The upper surface of the charge storage region is coupled to the overlying intermediate dielectric material. The lower surface faces the substrate surface and is separated from the substrate surface by a void. The charge storage region includes a first vertical sidewall and a second vertical sidewall that extend in the column direction and a third vertical sidewall and fourth vertical sidewall that extend in the row direction. The first, second, third, and fourth vertical sidewall are separated from neighboring features of the non-volatile memory by the void. The void may include a vacuum, air, gas, or a liquid.