Abstract:
A plurality of free-standing spring elements (512) are mounted to a surface (510a) of a carrier substrate (510). The carrier substrate (510) is mounted to a surface (502a) of a semiconductor device (502). Bond pads (504) of the semiconductor device are connected to the spring elements (512) by bond wires (520) extending between the bond pads (504) and terminals (516) associated with the spring elements. Alternatively, the carrier is flip-chip reflow soldered to the semiconductor device. The carrier substrate (510) is suitably mounted to one or more semiconductor devices (532, 534) prior to the semiconductor devices being singulated from a semiconductor wafer upon which they are formed. Resilience and compliance to effect pressure connections to the semiconductor device (502) are provided by the spring elements (512) extending from the carrier substrate (510), per se. Hence, the carrier substrate (510) suitably remains rigid with respect to the semiconductor device (502). The carrier substrate (510) is advantageously pre-fabricated, by mounting the spring elements (512) thereto prior to mounting the carrier substrate to the semiconductor device(s).
Abstract:
Die Erfindung betrifft eine Halbleiteranordnung (2) mit einem Halbleiterelement (4), einem Substrat (6) und Bondverbindungsmitteln (20a, 20b, 20c, 34, 58). Um, im Vergleich zum Stand der Technik, eine verbesserte Verdrahtung zu erreichen, wird vorgeschlagen, dass das Halbleiterelement (4), insbesondere stoffschlüssig, mit dem Substrat (6) verbunden ist, wobei das Halbleiterelement (4) auf einer dem Substrat (6) abgewandten Seite zumindest eine Kontaktfläche (8) aufweist, wobei zumindest eine Kontaktfläche (8) des Halbleiterelements (4) über zumindest ein erstes Bondverbindungsmittel (20a, 20b, 20c) mit dem Substrat (6) verbunden ist, wobei das zumindest eine erste Bondverbindungsmittel (20a, 20b, 20c) auf der Kontaktfläche (8) jeweils zumindest einen ersten Steppkontakt (22a, 22b, 22c) ausbildet, welcher zwischen einem ersten Loop (24a, 24b, 24c) und einem zweiten Loop (26a, 26b, 26c) des jeweiligen ersten Bondverbindungsmittels (20a, 20b, 20c) angeordnet ist, wobei der erste Loop (24a, 24b, 24c) ein erstes Maximum (28a, 28b, 28c) und der zweite Loop (26a, 26b, 26c) ein zweites Maximum (30a, 30b, 30c) aufweist, wobei ein erster Quer-Loop (32) eines zweiten Bondverbindungsmittels (34) oberhalb des ersten Steppkontakts (22a, 22b, 22c) und, parallel zur Kontaktfläche (8) verlaufend betrachtet, zwischen dem ersten Maximum (28a, 28b, 28c) des ersten Loops (24a, 24b, 24c) und dem zweiten Maximum (30a, 30b, 30c) des zweiten Loops (26a, 26b, 26c) verlaufend angeordnet ist, wobei der erste Quer-Loop (32) des zweiten Bondverbindungsmittels (34), insbesondere vollständig, unterhalb des ersten Maximums (28a, 28b, 28c) des ersten Loops (24a, 24b, 24c) und/oder des zweiten Maximums (30a, 30b, 30c) des zweiten Loops (26a, 26b, 26c) verlaufend angeordnet ist.
Abstract:
A power module (10) is provided which comprises a substrate (2), an electronic component (3) and an electrical connection (4), wherein the power module further comprises a first connection layer (5B) and a second connection layer (5C). The substrate (2) has a first metallization layer (21) and a second metallization layer (22) spatially separated from the first metallization layer (21) by a separating trench (2T). The first connection layer (5B) is formed along a vertical direction between the substrate (2) and the electronic component (3). The electronic component (3) is a semiconductor chip and is electrically and thermally connected to the first metallization layer (21) by the first connection layer (5B) being a patterned sintered connection layer which forms a sintered connection between the substrate (2) and the electronic component (3). In top view, an area (50) of the sintered connection is partly covered by a sintering material, wherein not-covered subregions (50U) are bordered by one or several outer edges (50E) of the area (50). A ratio of surfaces of the not-covered subregions (50U) to the respective area (50) of the sintered connection is between 10 % and 75 %, inclusive. The electrical connection (4) is electrically connected to the electronic component (3) by the second connection layer (5C) being another patterned sintered connection layer. Moreover, a method for producing such a power module (10) is provided.
Abstract:
The invention relates to producing a semiconductor chip-metal wire bond, by performing the steps of bonding a wire having a metal body to the semiconductor chip so as to connect the wire to the semiconductor chip, the bond metal having a polycrystalline microstructure, and deforming a bonding region of the metal body in contact with to the semiconductor chip, the deformed bonding region being characterized by a relative cross section area change given by (AA), where Af is a final cross section area and A0 is an initial cross section area, the deformation involving an increase of a dislocation density in the microstructure of at least a portion of the bonding region.
Abstract:
A packaged semiconductor device includes a first bond pad (225), a second bond pad (165, 165'), a first bond wire that includes a first end bonded to the first bond pad (225) and a second end bonded to the second bond pad (165, 165'), and a second bond wire that includes a first end that is electrically connected to the first bond pad (225) and a second end that is electrically connected to the second bond pad (165, 165'). The first end of the second bond wire is bonded to the first end of the first bond wire. A method of bonding a bond wire includes bonding a first end of a first bond wire to a contact surface of a first bond pad (225) and bonding a first end of a second bond wire to a surface of the first end of the first bond wire.
Abstract:
본 발명은 가압식 구리 필러 기판 본딩 방법에 관한 것으로, 더욱 상세하게는 원기둥 형태의 구리 필러를 효과적으로 기판에 배치하여 고정밀도로 본딩하는 가압식 구리 필러 기판 본딩 방법에 관한 것이다. 본 발명의 가압식 구리 필러 기판 본딩 방법은 매우 작은 크기의 구리 필러를 기판에 탑재하는 공정을 정확하고 효과적으로 수행할 수 있는 효과가 있다.
Abstract:
A method of electroplating a metal into features, having substantially different depths, of a partially fabricated electronic device on a substrate is provided. The method includes adsorbing accelerator into the bottom of recessed features; partially filling the features by a bottom up fill mechanism in an electroplating solution; diffusing leveler into shallow features to decrease the plating rate in shallow features as compared to deep features; and electroplating more metal into the features such that the height of metal in deep features is similar to the height of metal in shallow features.
Abstract:
Die Erfindung betrifft ein Lötverfahren für ein Bauteil auf einen Träger (8). Dabei wird das Lot als Lotdraht (20) oder Lotbändchen (20) bereitgestellt und mit einem Ultraschallbonder auf eine Montage- oder Befestigungsfläche appliziert. Hernach wird das Bauteil auf dem Lot positioniert und das Lot aufgeschmolzen. Schließlich erstarrt das Lot unter Ausbildung einer Lötverbindung des Bauteils mit dem Träger (8).