Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
Abstract:
Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.
Abstract:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
Abstract:
An apparatus includes a substrate having a land side having a plurality of contact pads and a die side opposite the land side. The apparatus includes a first die and a second die wherein the first die and second die are embedded within the substrate such that the second die is located between the first die and the land side of the substrate.
Abstract:
A substrate with an embedded stacked through-silicon via die is described. For example, an apparatus includes a first die and a second die. The second die has one or more through-silicon vias disposed therein (TSV die). The first die is electrically coupled to the TSV die through the one or more through-silicon vias. The apparatus also includes a coreless substrate. Both the first die and the TSV die are embedded in the coreless substrate.
Abstract:
A substrate with an embedded stacked through-silicon via die is described. For example, an apparatus includes a first die and a second die. The second die has one or more through-silicon vias disposed therein (TSV die). The first die is electrically coupled to the TSV die through the one or more through-silicon vias. The apparatus also includes a coreless substrate. Both the first die and the TSV die are embedded in the coreless substrate.
Abstract:
An apparatus includes a substrate having a land side having a plurality of contact pads and a die side opposite the land side. The apparatus includes a first die and a second die wherein the first die and second die are embedded within the substrate such that the second die is located between the first die and the land side of the substrate.
Abstract:
Embodiments of the present invention describe a semiconductor package having an embedded die. The semiconductor package comprises a coreless substrate that contains the embedded die. The semiconductor package provides die stacking or package stacking capabilities. Furthermore, embodiments of the present invention describe a method of fabricating the semiconductor package that minimizes assembly costs.