Abstract:
The present subject matter relates to the field of fabricating microelectronic devices. In at least one embodiment, the present subject matter relates to forming an interconnect that has a portion thereof which becomes debonded from the microelectronic device during cooling after attachment to an external device. The debonded portion allows the interconnect to flex and absorb stress.
Abstract:
An active component array includes a target substrate having one or more contacts formed on a side of the target substrate, and one or more printable active components distributed over the target substrate. Each active component includes an active layer having a top side and an opposing bottom side and one or more active element(s) formed on or in the top side of the active layer. The active element(s) are electrically connected to the contact(s), and the bottom side is adhered to the target substrate. Related fabrication methods are also discussed.
Abstract:
There is provided a method for manufacturing a flexible film comprising carbon nanotube interconnects, the method comprising: providing a first substrate; forming and patterning a catalyst layer on the substrate; forming vertically aligned electrically conducting carbon nanotube bundles from the catalyst; providing a second substrate opposite the first substrate and in contact with the carbon nanotube bundles such that a gap is formed between the first and second substrates; providing a flowing curable polymer in the gap between the first substrate and the second substrate such that the gap is filled by the polymer; curing the polymer to form a flexible solid; and removing the first substrate and the second substrate to provide a flexible polymer film comprising carbon nanotube interconnects connectable on respective sides of the film.
Abstract:
A die has interconnect pads on an interconnect side near an interconnect edge and has at least a portion of the interconnect side covered by a conformal dielectric coating, in which an interconnect trace over the dielectric coating forms a high interface angle with the surface of the dielectric coating. Because the traces have a high interface angle, a tendency for the interconnect materials to "bleed" laterally is mitigated and contact or overlap of adjacent traces is avoided. The interconnect trace includes a curable electrically conductive interconnect material; that is, it includes a material that can be applied in a flowable form, and thereafter cured or allowed to cure to form the conductive traces. Also, a method includes, prior to forming the traces, subjecting the surface of the conformal dielectric coating with a CF4 plasma treatment.
Abstract:
A system-level packaging method includes providing a packaging substrate (301) having a first functional surface and a second surface with wiring arrangement within the packaging substrate (301) and between the first functional surface and the second surface. The method also includes forming at least two package layers on the first functional surface of the packaging substrate (301), wherein each package layer is formed by subsequently forming a mounting layer, a sealant layer (303,306,311), and a wiring layer. Further, the method includes forming a top sealant layer and planting connection balls (312) on the second surface of the packaging substrate (301).
Abstract:
A method of making an electronic device having a discrete device mounted on a surface of an electronic die with both the discrete device and the die connected by heat cured conductive ink and covered with cured encapsulant including placing the discrete device on the die; and keeping the temperature of each of the discrete device and the die below about 200°C. Also disclosed is a method of electrically attaching a discrete device to a substrate that includes placing the device on the substrate, applying conductive ink that connects at least one terminal on the device to at least one contact on the substrate and curing the conductive ink. Also disclosed is an IC package with a discrete electrical device having electrical terminals; an electrical substrate having contact pads on a surface thereof; and cured conductive ink connecting at least one of the electrical terminals with at least one of the contact pads.
Abstract:
Methods of forming illumination systems comprise in some embodiments the steps of aligning light-emitting elements (310) with optical elements (620) and/or disposing light-conversion materials (720) on the light-emitting elements (310), as well as by providing electrical connectivity (320) to the light-emitting elements. Certain embodiments concern also light-emitting devices.
Abstract:
An apparatus includes a substrate having a land side having a plurality of contact pads and a die side opposite the land side. The apparatus includes a first die and a second die wherein the first die and second die are embedded within the substrate such that the second die is located between the first die and the land side of the substrate.