Abstract:
Electrode arrays for biological implants are disclosed, particularly for stimulating a retina. The present disclosure provides array for improving apposition (reducing the space between the array and the retina. The present disclosure also provides electrode array designs that can be made approximately spherical to increase the field of view of a visual prosthesis while still maintaining good apposition.
Abstract:
The invention is a device and method for connecting a hermetic package to a flexible circuit such as for an electrode array in an implantable device. Attaching metal pads on a flexible circuit to metal pads on a hermetic device by conductive adhesive is known. A smooth metal, such as platinum, does not bond well to conductive epoxy. The invention provides a roughened surface, such as by etching or by applying high surface area platinum gray, to improve adhesion to platinum or other metal pads.
Abstract:
The present invention is an improved hermetic package for implantation in the human body. The implantable device comprises an electrically non-conductive substrate; a plurality of electrically conductive vias through said electrically non-conductive substrate; a flip-chip circuit attached to said electrically non-conductive substrate using conductive bumps and electrically connected to a first subset of said plurality of electrically conductive vias, wherein said flip-chip circuit contains one or more stacks or a folded stack; a wire bonded circuit attached to said electrically non-conductive substrate and electrically connected to a second subset of said electrically conductive vias; and a cover bonded to said electrically non-conductive substrate, said cover, said electrically non-conductive substrate and said electrically conductive vias forming a hermetic package.
Abstract:
The present invention provides an implantable electrode with increased stability having a clustered structure wherein the surface of the electrode is covered with a material comprising openings which are filled with sticks or posts. The present invention provides an implantable electrode with increased stability wherein the surface is of the electrode comprises mesh grids which are filled with sticks which are filed with a conducting or insulating material. The present invention provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying photoresist layer on the metal layer; patterning the photoresist layer providing openings; electroplating the openings with metal; removing the photoresist layer leaving spaces; and filling the spaces with polymer. The present invention provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying a polymer layer on the metal layer; applying photoresist layer on the polymer layer; patterning the photoresist layer providing openings; electroplating the openings with metal; and removing the photoresist layer.
Abstract:
The present invention is an improved hermetic package for implantation in the human body. The implantable device of the present invention includes an eclectically non-conductive bass including electrically conductive vias through the substrate. A circuit is flip-chip bonded to a subset of the vias. A second circuit is wire bonded to another subset of the vias. Finally, a cover is bonded to the substrate such that the cover, substrate and vias form a hermetic package.
Abstract:
The invention is a device and method for connecting a hermetic package to a flexible circuit such as for an electrode array in an implantable device. Attaching metal pads on a flexible circuit to metal pads on a hermetic device by conductive adhesive is known. A smooth metal, such as platinum, does not bond well to conductive epoxy. The invention provides a roughened surface, such as etching or applying high surface area platinum gray, to improve adhesion to platinum or other metal pads.
Abstract:
A method for fabricating the hermetic electrical feedthrough. The method comprises providing a ceramic sheet having an upper surface and a lower surface, forming at least one via hole in said ceramic sheet extending from said upper surface to said lower surface, inserting a conductive thickfilm paste into said via hole, laminating the ceramic sheet with paste filled via hole between an upper ceramic sheet and a lower ceramic sheet to form a laminated ceramic substrate, firing the laminated ceramic substrate to a temperature to sinter the laminated ceramic substrate and cause the paste filled via hole to form metalized via and cause the laminated ceramic substrate to form a hermetic seal around said metalized via, and removing the upper ceramic sheet and the lower ceramic sheet material from the fired laminated ceramic substrate to expose an upper and a lower surface of the metalized via.
Abstract:
The present invention provides an implantable electrode with increased stability having a clustered structure wherein the surface of the electrode is covered with a material comprising openings which are filled with sticks or posts. The present invention provides an implantable electrode with increased stability wherein the surface is of the electrode comprises mesh grids which are filled with sticks which are filed with a conducting or insulating material. The present invention provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying photoresist layer on the metal layer; patterning the photoresist layer providing openings; electroplating the openings with metal; removing the photoresist layer leaving spaces; and filling the spaces with polymer. The present invention provides A method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying a polymer layer on the metal layer; applying photoresist layer on the polymer layer; patterning the photoresist layer providing openings; electroplating the openings with metal; and removing the photoresist layer
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
The present invention is an improved hermetic package for implantation in the human body. The implantable device comprises an electrically non-conductive substrate; a plurality of electrically conductive vias through said electrically non-conductive substrate; a flip-chip circuit attached to said electrically non-conductive substrate using conductive bumps and electrically connected to a first subset of said plurality of electrically conductive vias, wherein said flip-chip circuit contains one or more stacks or a folded stack; a wire bonded circuit attached to said electrically non-conductive substrate and electrically connected to a second subset of said electrically conductive vias; and a cover bonded to said electrically non-conductive substrate, said cover, said electrically non-conductive substrate and said electrically conductive vias forming a hermetic package.