Abstract:
The present invention provides a conductive adhesive comprising conductive particles and a resin wherein 30% by weight or more of the conductive particles substantially comprise silver and tin, and a molar ratio of silver and tin in the metal components of the conductive adhesive is in the range of 77.5 : 22.5 to 0 : 100; and a circuit connected by using the conductive adhesive.
Abstract:
The dielectric-forming composition according to the invention is characterized by consisting of: composite particles for dielectrics in which part or all of the surfaces of inorganic particles with permittivity of 30 or greater are coated with a conductive metal or a compound thereof, or a conductive organic compound or a conductive inorganic material; and (B) a resin component constituted of at least one of a polymerizable compound and a polymer. In addition, another dielectric-forming composition according to the invention is characterized by containing: ultrafine particle-resin composite particles composed of (J) inorganic ultrafine particles with the average particle size of 0.1 mu m or smaller, and (B) a resin component constituted of at least one of a polymerizable compound and a polymer, wherein part or all of the surfaces of the inorganic ultrafine particles (J) are coated with the resin component (B), and the ultrafine particle-resin composite particles contain 20% by weight or more of the inorganic ultrafine particles (J); and inorganic particles with the average particle size of 0.1 to 2 mu m and permittivity of 30 or greater, or inorganic composite particles in which a conductive metal or a compound thereof, or a conductive organic compound or a conductive inorganic material is deposited on the part or all of the surfaces of the inorganic particles.
Abstract:
A high dielectric constant composite material obtained by subjecting submicron particles of an inorganic filler containing a metal as its essential component to an insulating treatment such as a chemical treatment, further subjecting to a surface treatment for improving their compatibility with organic resins, and then dispersing in an organic resin, has a dielectric constant of 15 or above, with its dielectric loss tangent in the frequency region of from 100 MHz to 80 GHz being 0.1 or less, and can therefore be used effectively for multilayer wiring boards and module substrates.
Abstract:
An electrically conductive cement which when used to bond electrically conductive mating surfaces provides substantially stable conductivity characteristics under high humidity conditions; comprised of a carrier that provides a volumetric shrinkage of more than about 6.8% (vol.) and a conductive filler including agglomerates, particles, powders, flakes, coated nickel particles, and coated glass spheres, having size and surface characteristics that maintain stable electrical contact by forming a moisture resistant contact with an electrical component lead. The carrier having a volumetric shrinkage between the uncured and cured states of greater than about 6.8% (vol) appears to effect a compaction of the filler particles causing the particles to be forced into enhanced electrical contact with the surfaces to be connected and to provide a measure of compaction between the particles themselves to enhance particle-to-particle conduction. The shrinkage of the polymeric carrier during curing places the interior particles under compression with sufficient force to urge the particles into engagement with one another as well as to cause the particles to penetrate non-conductive oxides that may be present on a component lead.
Abstract:
An electrically conductive cement which when used to bond electrically conductive mating surfaces provides substantially stable conductivity characteristics under high humidity conditions; comprised of a carrier that provides a volumetric shrinkage of more than about 6.8% (vol.) and a conductive filler including agglomerates, particles, powders, flakes, coated nickel particles, and coated glass spheres, having size and surface characteristics that maintain stable electrical contact by forming a moisture resistant contact with an electrical component lead. The carrier having a volumetric shrinkage between the uncured and cured states of greater than about 6.8% (vol) appears to effect a compaction of the filler particles causing the particles to be forced into enhanced electrical contact with the surfaces to be connected and to provide a measure of compaction between the particles themselves to enhance particle-to-particle conduction. The shrinkage of the polymeric carrier during curing places the interior particles under compression with sufficient force to urge the particles into engagement with one another as well as to cause the particles to penetrate non-conductive oxides that may be present on a component lead.
Abstract:
The invention concerns a method for improving resistance to stress, in particular thermal, of a welding, which consists in incorporating therein superelastic particles in a proportion of about 10 to 30 % in volume. Said incorporation is carried out by coating particles with a metal, copper for instance, wettable by the soldering.
Abstract:
A structure and method of fabrication are described. The structure is a combination of a polymeric material (36) and particles (32), e.g. Cu, having an electrically conductive coating (34), e.g. Sn. Heat is applied to fuse the coating of adjacent particles. The polymeric material (36) is a thermoplastic. The structure is disposed between two electrically conductive surfaces (40,42), e.g. chip and substrate pads, to provide electrical interconnection and adhesion between their pads.
Abstract:
In accordance with the invention, an electronic device (9) having one or more contact pads (12) is adhered to an array of transferable solder particles (31) on a removable carrier sheet (32). The carrier is removed, as by dissolving, leaving solder selectively adhered to the contact pads. In a preferred embodiment the solder-carrying medium is water soluble, and the solder particles comprise solder-coated magnetic particles. Application of a magnetic material while the medium is drying or curing, produces a regular array of solder-coated particles. Using this method, devices having smaller than conventional contact structures can be readily interconnected.
Abstract:
Provided are a Cu core ball and a cu core column, which achieve dropping strength and strength against heat cycle. The Cu core ball (1) contains a Cu ball (2) made of Cu or a Cu alloy and a solder layer (3) which is made of a solder alloy composed of Sn and Cu and covers the Cu ball (2). The solder layer (3) contains not less than 0.1 % through not more than 3.0 % of Cu and the remainder is composed of Sn and impurities.
Abstract:
The present invention aims to provide electroconductive microparticles which are less likely to cause disconnection due to breakage of connection interfaces between electrodes and the electroconductive microparticles even under application of an impact by dropping or the like and are less likely to be fatigued even after repetitive heating and cooling, and an anisotropic electroconductive material and an electroconductive connection structure each produced using the electroconductive microparticles. The present invention relates to electroconductive microparticles each including at least an electroconductive metal layer, a barrier layer, a copper layer, and a solder layer containing tin that are laminated in said order on a surface of a core particle made of a resin or metal, the copper layer and the solder layer being in contact with each other directly, the copper layer directly in contact with the solder layer containing copper at a ratio of 0.5 to 5 % by weight relative to tin contained in the solder layer.