PROCESSES FOR DEPOSITING SIB FILMS
    1.
    发明公开

    公开(公告)号:US20240339316A1

    公开(公告)日:2024-10-10

    申请号:US18746799

    申请日:2024-06-18

    CPC classification number: H01L21/02123 H01L21/02211 H01L21/02271

    Abstract: Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.

    METHODS OF FORMING HARDMASKS
    2.
    发明申请

    公开(公告)号:US20220122835A1

    公开(公告)日:2022-04-21

    申请号:US17075967

    申请日:2020-10-21

    Abstract: Embodiments of the present disclosure generally relate to methods of forming hardmasks. Embodiments described herein enable, e.g., formation of carbon-containing hardmasks having reduced film stress. In an embodiment, a method of processing a substrate is provided. The method includes positioning a substrate in a processing volume of a processing chamber and depositing a diamond-like carbon (DLC) layer on the substrate. After depositing the DLC layer, the film stress is reduced by performing a plasma treatment, wherein the plasma treatment comprises applying a radio frequency (RF) bias power of about 100 W to about 10,000 W.

    METHODS FOR PRODUCING HIGH-DENSITY CARBON FILMS FOR HARDMASKS AND OTHER PATTERNING APPLICATIONS

    公开(公告)号:US20210407802A1

    公开(公告)日:2021-12-30

    申请号:US17035265

    申请日:2020-09-28

    Abstract: Embodiments of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the embodiments described herein provide methods for producing reduced-stress diamond-like carbon films for patterning applications. In one or more embodiments, a method includes flowing a deposition gas containing a hydrocarbon compound into a processing volume of a process chamber having a substrate positioned on an electrostatic chuck and generating a plasma above the substrate in the processing volume by applying a first RF bias to the electrostatic chuck to deposit a stressed diamond-like carbon film on the substrate. The stressed diamond-like carbon film has a compressive stress of −500 MPa or greater. The method further includes heating the stressed diamond-like carbon film to produce a reduced-stress diamond-like carbon film during a thermal annealing process. The reduced-stress diamond-like carbon film has a compressive stress of less than −500 MPa.

    CVD BASED SPACER DEPOSITION WITH ZERO LOADING

    公开(公告)号:US20200043722A1

    公开(公告)日:2020-02-06

    申请号:US16514534

    申请日:2019-07-17

    Abstract: Embodiments of the present disclosure relate to deposition methods for dielectric layers with zero pattern loading characteristics. In one embodiment, the method includes depositing a conformal dielectric layer on the substrate having a patterned area and a blanket area by exposing the substrate to a deposition precursor and a tuning gas simultaneously without the presence of plasma in a process chamber, wherein the deposition precursor is reacted to form a chemical reaction by-product, and the chemical reaction by-product is the same as the tuning gas, and wherein the deposition precursor and the tuning gas are provided at an amount that is more than required for the deposition reaction to occur at the patterned area and the blanket area.

    PROCESSES FOR DEPOSITING SIB FILMS

    公开(公告)号:US20220406594A1

    公开(公告)日:2022-12-22

    申请号:US17352039

    申请日:2021-06-18

    Abstract: Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.

    METHODS FOR MODIFYING PHOTORESIST PROFILES AND TUNING CRITICAL DIIMENSIONS

    公开(公告)号:US20200321210A1

    公开(公告)日:2020-10-08

    申请号:US16797111

    申请日:2020-02-21

    Abstract: Embodiments for processing a substrate are provided and include a method of trimming photoresist to provide photoresist profiles with smooth sidewall surfaces and to tune critical dimensions (CD) for the patterned features and/or a subsequently deposited dielectric layer. The method can include depositing a sacrificial structure layer on the substrate, depositing a photoresist on the sacrificial structure layer, and patterning the photoresist to produce a crude photoresist profile on the sacrificial structure layer. The method also includes trimming the photoresist with a plasma to produce a refined photoresist profile covering a first portion of the sacrificial structure layer while a second portion of the sacrificial structure layer is exposed, etching the second portion of the sacrificial structure layer to form patterned features disposed on the substrate, and depositing a dielectric layer on the patterned features.

Patent Agency Ranking