摘要:
A dummy circuit pattern is disclosed on a surface of a substrate for a semiconductor package. The dummy circuit pattern includes a plurality of straight line segments and a plurality of interrupt patterns to breakup one or more of the straight line segments. The interrupt patterns are provided so as to not electrically isolate areas of the dummy pattern, thus providing electrical continuity across the dummy circuit pattern.
摘要:
A strengthened semiconductor die substrate and package are disclosed. The substrate may include contact fingers formed with nonlinear edges. Providing a nonlinear contour to the contact finger edges reduces the mechanical stress exerted on the semiconductor die which would otherwise occur with straight edges to the contact fingers. The substrate may additionally or alternatively include plating traces extending at an angle from the contact fingers. Extending at an angle, at least the ends of the plating traces at the edge of the substrate are covered beneath a lid in which the semiconductor package is encased. Thus, when in use with a host device, contact between the ends of the plating traces beneath the lid and contact pins of the host device is avoided.
摘要:
A substrate, and a semiconductor die package formed therefrom, are disclosed which include a distributed plating pattern for reducing mechanical stress on the semiconductor die. The substrate according to embodiments of the invention may include traces and contact pads plated in a double image plating process. Additionally, the substrate may include dummy plating areas including plating material. The plated vias and/or traces and the plating material within the dummy plating areas provide a plating pattern which is evenly distributed across the surface of the substrate. The even distribution of the plating pattern prevents peaks and valleys in the finished substrate.
摘要:
A semiconductor package having a low profile is disclosed. In embodiments, a surface mounted component may be mounted directly to the core of the semiconductor package substrate, so that there is no conductive layer, plating layers or solder paste between the component and the substrate core. The surface mounted component may be any type of component which may be surface mounted on a substrate according to an SMT process, including for example passive components and various packaged semiconductors.
摘要:
A substrate, and a semiconductor die package formed therefrom, are disclosed which include a distributed plating pattern for reducing mechanical stress on the semiconductor die. The substrate according to embodiments of the invention may include traces and contact pads plated in a double image plating process. Additionally, the substrate may include dummy plating areas including plating material. The plated vias and/or traces and the plating material within the dummy plating areas provide a plating pattern which is evenly distributed across the surface of the substrate. The even distribution of the plating pattern prevents peaks and valleys in the finished substrate.
摘要:
A printed circuit board is disclosed having coextensive electrical connectors and contact pad areas. Areas of the contact pads where the traces and/or vias are located may be etched away to ensure electrical isolation between the traces, vias and contact pads.
摘要:
A strengthened semiconductor die substrate and package are disclosed. The substrate may include contact fingers formed with nonlinear edges. Providing a nonlinear contour to the contact finger edges reduces the mechanical stress exerted on the semiconductor die which would otherwise occur with straight edges to the contact fingers. The substrate may additionally or alternatively include plating traces extending at an angle from the contact fingers. Extending at an angle, at least the ends of the plating traces at the edge of the substrate are covered beneath a lid in which the semiconductor package is encased. Thus, when in use with a host device, contact between the ends of the plating traces beneath the lid and contact pins of the host device is avoided.
摘要:
A rigid wave pattern formed on a first side of a substrate in a semiconductor die package. The rigid wave pattern aligns with and overlies the contact fingers formed on the second side of the substrate. When the substrate and dice are encased during the molding process, the rigid wave pattern effectively reduces deformation of and stresses on the dice, therefore substantially alleviating die cracking.
摘要:
A strengthened semiconductor die substrate and package are disclosed. The substrate may include contact fingers formed with nonlinear edges. Providing a nonlinear contour to the contact finger edges reduces the mechanical stress exerted on the semiconductor die which would otherwise occur with straight edges to the contact fingers. The substrate may additionally or alternatively include plating traces extending at an angle from the contact fingers. Extending at an angle, at least the ends of the plating traces at the edge of the substrate are covered beneath a lid in which the semiconductor package is encased. Thus, when in use with a host device, contact between the ends of the plating traces beneath the lid and contact pins of the host device is avoided.
摘要:
A semiconductor package having a low profile is disclosed. In embodiments, a surface mounted component may be mounted directly to the core of the semiconductor package substrate, so that there is no conductive layer, plating layers or solder paste between the component and the substrate core. The surface mounted component may be any type of component which may be surface mounted on a substrate according to an SMT process, including for example passive components and various packaged semiconductors.