Abstract:
Embodiments disclosed herein include a package substrate. In an embodiment, the package substrate comprises a core where the core comprises glass. In an embodiment, the package substrate further comprises an optical waveguide over the core, and an optical phase change material over the optical waveguide.
Abstract:
An apparatus to test a semiconductive device includes a base plane that holds at least one heat-transfer fluid unit cell. The at least one heat-transfer fluid unit cell includes a fluid supply structure including a supply-orifice cross section as well as a fluid return structure including a return-orifice cross section. The supply-orifice cross section is greater than the return-orifice cross section. A die interface is also included to be a liquid-impermeable material.
Abstract:
A communication system, including a first carrier and a first antenna mounted on the first carrier; a second carrier and a second antenna mounted on the second carrier, wherein the first antenna and the second antenna are arranged relative to each other that the first antenna and the second antenna can establish wireless link; a third carrier and a third antenna mounted on the third carrier; a fourth carrier and a fourth antenna mounted on the fourth carrier, wherein the third antenna and the fourth antenna are arranged relative to each other that the third antenna and the fourth antenna can establish wireless link; and a transmission structure, within which the signal propagate through, connects the second antenna and the third antenna.
Abstract:
Various devices, systems, and/or methods perform wireless chip to chip high speed data transmission. Strategies for such transmission include use of improved microbump antennas, wireless chip to chip interconnects, precoding and decoding strategies, channel design to achieve spatial multiplexing gain in line of sight transmissions, open cavity chip design for improved transmission, and/or mixed signal channel equalization.
Abstract:
Embodiments described herein may be related to apparatuses, processes, and techniques related to thermally and/or electrically coupling a thermal die to the surface of a photonic integrated circuit (PIC) within an open cavity in a substrate, where the thermal die is proximate to a laser on the PIC. Other embodiments may be described and/or claimed.
Abstract:
The present disclosure relates to a semiconductor package comprising a substrate, a radio frequency integrated circuit attached to the substrate, optionally at least one semiconductor die attached to the substrate and coupled to a radio frequency integrated circuit (RFIC) via one or more signal lines, a molding compound encapsulating the RFIC and the optional semiconductor die, and an antenna formed on the molding compound and coupled to the RFIC.
Abstract:
In various aspects, a device-to-device communication system is provided including a first device and a second device. Each of the first device and the second device includes an antenna, a radio frequency frond-end circuit, and a baseband circuit. Each of the first device and the second device are at least one of a chiplet or a package. The device-to-device communication system further includes a cover structure housing the first device and the second device. Each of the first device and the second device are at least one of a chiplet or a package. The device-to-device communication system further includes a radio frequency signal interface wirelessly communicatively coupling the first device and the second device. The radio frequency signal interface includes the first antenna and the second antenna.
Abstract:
In various aspects, a package system includes at least a first package and a second package arranged on a same side of the package carrier. Each of the first package and the second package comprises an antenna to transmit and/or receive radio frequency signals. A cover may be arranged at a distance over the first package and the second package at the same side of the package carrier as the first package and the second package. The cover comprises at least one conductive element forming a predefined pattern on a side of the cover facing the first package and the second package. The predefined pattern is configured as a frequency selective surface. The package system further includes a radio frequency signal interface wirelessly connecting the antennas of the first package and the second package. The radio frequency signal interface comprises the at least one conductive element.
Abstract:
An apparatus may include a substrate including: a first antenna configured to form a first short range wireless interconnection with a first antenna of a further substrate, a second antenna spaced apart from the first antenna, the second antenna is configured to form a second short range wireless interconnection with a second antenna of the further substrate, and a metamaterial configured to form a surface with effective negative permeability within a space formed between a surface of the substrate and a surface of the further substrate for an established short range wireless interconnection of the first short range wireless interconnection and the second short range wireless interconnection.
Abstract:
The present disclosure relates to a device which includes a processor configured to: select, using sensor data, an error correction code from two or more error correction codes, the sensor data representing a physical state of the processor and/or the device; generate channel-coded data by channel-coding input data using the selected error correction code; and provide a representation of the channel-coded data to a transmitter for wireless data transmission.