Abstract:
Resistive random access memory (ReRAM) cells can include an embedded metal nanoparticle switching layer and electrodes. The metal nanoparticles can be formed using a micelle solution. The generation of the nanoparticles can be controlled in multiple dimensions to achieve desirable performance characteristics, such as low power consumption as well as low and consistent switching currents.
Abstract:
Systems and methods for improving the performance of one way mirror applications are disclosed. Methods consistent with the present disclosure include introducing a glass substrate into a processing chamber. The processing chamber comprises a sputter target assembly disposed over the substrate. Next, depositing metal silicide material within a plurality of site-isolated regions on the substrate to form a metal silicide coating within each region. Notably, each metal silicide coating has a thickness between 0.001 and 0.5 microns. Finally, evaluating results of the metal silicide coating formed within the plurality of site-isolated regions.
Abstract:
Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2.
Abstract:
Methods and apparatuses for performing combinatorial processing are disclosed. Methods include introducing a substrate into a processing chamber. The processing chamber includes a sputter assembly disposed over the substrate. The sputter assembly includes a rotatable n-fold, symmetric-shaped magnetron and a sputter target. The methods include depositing a first film on the surface of a first site-isolated region of the substrate. The methods further include depositing a second film on the surface of a second site-isolated region of the substrate. Furthermore, methods include evaluating results of the first and second films.
Abstract:
Embodiments of the present invention include low emissivity (low-E) coatings and methods for forming the coatings. The low-E coating comprises a self-assembled monolayer (SAM) on a glass substrate, where one surface of the SAM is disposed in contact with and covalently bonded to the glass substrate, and one surface of the monolayer is disposed in contact with and covalently bonded to a metal layer. In some embodiments, the low-E coating comprises an assembly of one or more monomeric subunits of the following structure: Si—(CnHy)-(LM)m where n is from 1 to 20, y is from 2n−2 to 2n, m is 1 to 3, L is a Group VI element, and M is a metal, such as silver. In some embodiments, (CnHy) can be branched, crosslinked, or cyclic. The coating can further comprise an antireflection coating on the metal layer.
Abstract translation:本发明的实施例包括低发射率(低E)涂层和形成涂层的方法。 低E涂层包括在玻璃基板上的自组装单层(SAM),其中SAM的一个表面设置成与玻璃基板接触并共价结合到玻璃基板上,单层的一个表面设置成与 共价键合到金属层。 在一些实施方案中,低E涂层包含以下结构的一个或多个单体亚单位的组合:Si-(CnHy) - (LM)m,其中n为1至20,y为2n-2至2n, m为1〜3,L为VI族元素,M为银等金属。 在一些实施方案中,(C n H y)可以是支链,交联或环状的。 涂层还可以包括在金属层上的抗反射涂层。
Abstract:
Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2.
Abstract:
A doped fullerene-based conductive material can be used as an electrode, which can contact a dielectric such as a high k dielectric. By aligning the dielectric with the band gap of the doped fullerene-based electrode, e.g., the conduction band minimum of the dielectric falls into one of the band gaps of the doped fullerene-based material, thermionic leakage through the dielectric can be reduced, since the excited electrons or holes in the electrode would need higher thermal excitation energy to overcome the band gap before passing through the dielectric layer.
Abstract:
Embodiments of the present invention include diffusion barriers, methods for forming the barriers, and semiconductor devices utilizing the barriers. The diffusion barrier comprises a self-assembled monolayer (SAM) on a semiconductor substrate, where one surface of the SAM is disposed in contact with and covalently bonded to the semiconductor substrate, and one surface of the monolayer is disposed in contact with and covalently bonded to a metal layer. In some embodiments, the barrier comprises an assembly of one or more monomeric subunits of the following structure: Si—(CnHy)-(LM)m where n is from 1 to 20, y is from 2n−2 to 2n, m is 1 to 3, L is a Group VI element, and M is a metal, such as copper. In some embodiments, (CnHy) can be branched, crosslinked, or cyclic.
Abstract translation:本发明的实施例包括扩散阻挡层,形成屏障的方法以及利用屏障的半导体器件。 扩散阻挡层包括在半导体衬底上的自组装单层(SAM),其中SAM的一个表面设置成与半导体衬底接触并且共价键合到半导体衬底,并且单层的一个表面被设置成接触并共价键合 到金属层。 在一些实施方案中,阻挡层包含一个或多个下列结构的单体亚单位的组合:Si-(CnHy) - (LM)m,其中n为1至20,y为2n-2至2n,m为1 至3,L为VI族元素,M为金属,例如铜。 在一些实施方案中,(C n H y)可以是支链,交联或环状的。
Abstract:
Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma processing can be performed in a same process chamber. The process chamber, configured to perform sputter deposition and plasma processing, comprises a grounded shield having at least an aperture disposed above the substrate to form a small, dark space gap to reduce or eliminate any plasma formation within the gap. The plasma processing may include plasma etching or plasma surface treatment.
Abstract:
Embodiments of the present invention include low emissivity (low-E) coatings and methods for forming the coatings. The low-E coating comprises a self-assembled monolayer (SAM) on a glass substrate, where one surface of the SAM is disposed in contact with and covalently bonded to the glass substrate, and one surface of the monolayer is disposed in contact with and covalently bonded to a metal layer. In some embodiments, the low-E coating comprises an assembly of one or more monomeric subunits of the following structure: Si—(CnHy)-(LM)m where n is from 1 to 20, y is from 2n-2 to 2n, m is 1 to 3, L is a Group VI element, and M is a metal, such as silver. In some embodiments, (CnHy) can be branched, crosslinked, or cyclic. The coating can further comprise an antireflection coating on the metal layer.
Abstract translation:本发明的实施例包括低发射率(低E)涂层和形成涂层的方法。 低E涂层包括在玻璃基板上的自组装单层(SAM),其中SAM的一个表面设置成与玻璃基板接触并共价结合到玻璃基板上,单层的一个表面设置成与 共价键合到金属层。 在一些实施方案中,低E涂层包含以下结构的一个或多个单体亚单位的组合:Si-(CnHy) - (LM)m,其中n为1至20,y为2n-2至2n, m为1〜3,L为VI族元素,M为银等金属。 在一些实施方案中,(C n H y)可以是支链,交联或环状的。 涂层还可以包括在金属层上的抗反射涂层。