Abstract:
A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
Abstract:
A device and method for fabricating a photovoltaic device includes forming a double layer transparent conductive oxide on a transparent substrate. The double layer transparent conductive oxide includes forming a doped electrode layer on the substrate, and forming a buffer layer on the doped electrode layer. The buffer layer includes an undoped or p-type doped intrinsic form of a same material as the doped electrode layer. A light-absorbing semiconductor structure includes a p-type semiconductor layer on the buffer layer, an intrinsic layer and an n-type semiconductor layer.
Abstract:
Methods for forming a photovoltaic device include forming a buffer layer between a transparent electrode and a p-type layer. The buffer layer includes a work function that falls substantially in a middle of a barrier formed between the transparent electrode and the p-type layer to provide a greater resistance to light induced degradation. An intrinsic layer and an n-type layer are formed over the p-type layer.
Abstract:
A photovoltaic device and method include a substrate, a conductive layer formed on the substrate and an absorber layer formed on the conductive layer from a Cu—Zn—Sn containing chalcogenide material. An emitter layer is formed on the absorber layer and a buffer layer is formed on the emitter layer including an atomic layer deposition (ALD) layer. A transparent conductor layer is formed on the buffer layer.
Abstract:
A photovoltaic device and method for fabrication include multijunction cells, each cell having a material grown independently from the other and including different band gap energies. An interface is disposed between the cells and configured to wafer bond the cells wherein the cells are configured to be adjacent without regard to lattice mismatch.
Abstract:
A photovoltaic device and method include forming a plurality of pillar structures in a substrate, forming a first electrode layer on the pillar structures and forming a continuous photovoltaic stack including an N-type layer, a P-type layer and an intrinsic layer on the first electrode. A second electrode layer is deposited over the photovoltaic stack such that gaps or fissures occur in the second electrode layer between the pillar structures. The second electrode layer is wet etched to open up the gaps or fissures and reduce the second electrode layer to form a three-dimensional electrode of substantially uniform thickness over the photovoltaic stack.
Abstract:
A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
Abstract:
A photovoltaic device and method include forming a plurality of pillar structures in a substrate, forming a first electrode layer on the pillar structures and forming a continuous photovoltaic stack including an N-type layer, a P-type layer and an intrinsic layer on the first electrode. A second electrode layer is deposited over the photovoltaic stack such that gaps or fissures occur in the second electrode layer between the pillar structures. The second electrode layer is wet etched to open up the gaps or fissures and reduce the second electrode layer to form a three-dimensional electrode of substantially uniform thickness over the photovoltaic stack.
Abstract:
A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
Abstract:
A photovoltaic device includes a substrate, a first electrode formed on the substrate and a p-type absorber layer including a chalcogenide compound. An n-type layer includes a zinc oxysulfide material having a sulfur content adjusted to match a feature of the absorber layer. A transparent contact is formed on the n-type layer.