Abstract:
A manufacturing method for a micromechanical component, and in particular for a micromechanical rotation rate sensor, which has a supporting first layer, an insulating second layer that is arranged on the first layer, and a conductive third layer that is arranged on the second layer. The method includes the following steps: provide the second layer, in the form of patterned first and second insulation regions, on the first layer; provide a first protective layer on an edge region of the first insulation regions and on a corresponding boundary region of the first layer; provide the third layer on the structure resulting from the previous steps; pattern out a structure of conductor paths running on the first insulation regions, and a functional structure of the micromechanical component above the second insulation regions, from the third layer; and remove the second layer in the second insulation regions, the second layer being protected in the first insulation regions by the first protective layer in such a way that it is essentially not removed there.
Abstract:
A rate-of-rotation sensor includes a three-layer system. The rate-of-rotation sensor and the conductor traces are patterned out of the third layer. The conductor traces are electrically insulated (isolated) by cutouts from other regions of the third layer and by a second electrically insulating layer from a first layer. Thus, a simple electrical contacting (configuration) is achieved that is patterned out of a three-layer system. Since the same etching process is used for the first and the third layer, an especially efficient manufacturing is possible.
Abstract:
A bonding pad structure, in particular for a micromechanical sensor, includes a substrate, an electrically insulating sacrificial layer provided on the substrate, a patterned conductor path layer buried in the sacrificial layer, a contact hole provided in the sacrificial layer, and a bonding pad base, composed of an electrically conductive material. The bonding pad base has a first region extending over the sacrificial layer, and a second layer in contact with the conductor path region and extending through the contact hole. A protective layer is provided at least temporarily on the sacrificial layer in a specific region beneath and around the bonding pad base to prevent underetching of the sacrificial layer beneath the bonding pad base during etching of the sacrificial layer in such a way that the substrate and/or the conductor path is exposed.
Abstract:
A method for manufacturing a micromechanical component, in particular, a surface-micromechanical yaw sensor, includes the following steps: providing a substrate having a front side and a back side; forming a micromechanical pattern on the front side; applying a protective layer on the micromechanical pattern on the front side; forming a micromechanical pattern on the back side, a resting on the micromechanical pattern on the front side taking place at least temporarily; removing the protective layer on the front side; and optionally further processing the micromechanical pattern on the front side and/or the micromechanical pattern on the back side.
Abstract:
A micromechanical component includes: a substrate; a micromechanical functional plane provided on the substrate; a covering plane provided on the micromechanical functional plane; and a printed circuit trace plane provided on the covering plane. The covering plane includes a monocrystalline region which is epitaxially grown on an underlying monocrystalline region, and the covering plane includes a polycrystalline region which is epitaxially grown on an underlying polycrystalline starting layer at the same time.
Abstract:
A method for fabricating a micromechanical component, in particular a surface-micromechanical acceleration sensor, involves preparing a substrate and providing an insulation layer on the substrate, in which a patterned circuit trace layer is buried. A conductive layer, including a first region and a second region, is provided on the insulation layer, and a movable element is configured in the first region by forming a first plurality of trenches and by using an etching agent to remove at least one portion of the insulation layer from underneath the conductive layer. A contact element is formed and electrically connected to the circuit trace layer in the second region by configuring a second plurality of trenches, and the resultant movable element is encapsulated in the first region. The second plurality of trenches for forming the contact element in the second region is first formed after the encapsulation of the movable element formed in the first region.
Abstract:
A sensor in which the structure of a movable element is produced from an upper silicon layer of a laminated substrate. Individual regions of the upper layer are insulated from one another by insulation trenches which are bridged by conductor tracks coupled to at least one electrode on the movable element and at least one stationary electrode on the upper layer proximate to the at least one electrode on the movable element.
Abstract:
A mass flow sensor includes a measuring element arranged on a membrane that is clamped in a frame. The sensor is formed by introducing a recess into a silicon wafer. Through the application of a recess having perpendicular walls, the thickness of the frame can be reduced, thus allowing the required surface area of the wafer to also be reduced.
Abstract:
A method for producing capacitive sensors which is used in particular for the parallel production of capacitive sensors with exactly defined stray capacitance. For this purpose, troughs (15, 16, 17) are cut along or parallel to the splitting lines (6), so that adjustment errors in the position of the cut, during separation of the sensors, and variations in the cut width have no effect on the stray capacitance.
Abstract:
A micromechanical sensor includes a support of silicon substrate having an epitaxial layer of silicon applied on the silicon substrate. A part of the epitaxial layer is laid bare to form at least one micromechanical deflection part by an etching process. The bared deflection part is made of polycrystalline silicon which has grown in polycrystalline form during the epitaxial process over a silicon-oxide layer which has been removed by etching. In the support region and/or at the connection to the silicon substrate, the exposed deflection part passes into single crystal silicon. By large layer thicknesses, a large working capacity of the sensor is possible. The sensor structure provides enhanced mechanical stability, processability, and possibilities of shaping, and it can be integrated, in particular, in a bipolar process or mixed process (bipolar-CMOS, bipolar-CMOS-DMOS).