摘要:
A plurality of openings are formed in a resin insulation layer on a bottom surface side of a wiring laminate portion which constitutes a multilayer wiring substrate. A plurality of motherboard connection terminals are disposed to correspond to the openings. The motherboard connection terminals are primarily comprised of a copper layer, and peripheral portions of terminal outer surfaces thereof are covered by the outermost resin insulation layer. A dissimilar metal layer made of at least one metal which is lower in etching rate than copper is formed between an inner main surface of the outermost resin insulation layer and peripheral portions of the terminal outer surfaces.
摘要:
In a build-up step, a plurality of resin insulation layers and a plurality of conductive layers are alternately laminated in multilayer arrangement on a metal foil separably laminated on a side of a base material, thereby forming a wiring laminate portion. In a drilling step, a plurality of openings are formed in an outermost resin insulation layer through laser drilling so as to expose connection terminals. Subsequently, in a desmear step, smears from inside the openings are removed. In a base-material removing step performed after the build-up step, the base material is removed and the metal foil is exposed.
摘要:
A multilayered wiring substrate, comprising: a plurality of first main surface side connecting terminals arranged in a first main surface of a stack structure; and a plurality of second main surface side connecting terminals being arranged in a second main surface of the stack structure; wherein a plurality of conductor layers are alternately formed in a plurality of stacked resin insulation layers and are operably connected to each other through via conductors tapered such that diameters thereof are widened toward the first or the second main surface, wherein a plurality of openings are formed in an exposed outermost resin insulation layer in the second main surface, and terminal outer surfaces of the second main surface side connecting terminals arranged to match with the plurality of the openings are positioned inwardly from an outer main surface of the exposed outermost resin insulation layer, and edges of terminal inner surfaces are rounded.
摘要:
A multilayer wiring substrate includes first principal surface side connection terminals arranged on a first principal surface of a stacked configuration; wherein, the first principal surface side connection terminals include an IC chip connection terminal, and a passive element connection terminal; the IC chip connection terminal is located in an opening formed in a resin insulating layer of an uppermost outer layer; the passive element connection terminal is formed of an upper terminal part formed on the resin insulating layer, and a lower terminal part located in an opening formed at a portion of an inner side of the upper terminal part in the resin insulating layer; and, wherein an upper face of the upper terminal part is higher than a reference surface, and an upper face of the IC chip connection terminal and the lower terminal part are identical in height to or lower in height than the reference surface.
摘要:
A plurality of openings are formed in a resin insulation layer on a top surface side of a wiring laminate portion, and a plurality of openings are formed in a resin insulation layer on a bottom surface side thereof. A plurality of connection terminals are disposed to correspond to the openings. Peripheral portions of terminal outer surfaces of the connection terminals are covered by the resin insulation layer on the top surface side, and peripheral portions of terminal outer surfaces of the connection terminals are covered by the resin insulation layer on the bottom surface side. Each of the second-main-surface-side connection terminals has a concave portion at the center of the terminal outer surface, and the deepest portion of the concave portion is located on the interior side in relation to the peripheral portion of the terminal outer surface.
摘要:
In a wiring laminate portion of a multilayer wiring substrate, a solder resist layer having a plurality of openings is disposed on a main surface side of the laminate structure, and connection terminals are embedded in an outermost resin insulation layer in contact with the solder resist layer. Each of the connection terminals comprises a copper layer and a metallic layer formed of at least one type of metal other than copper. A main-surface-side circumferential portion of the copper layer is covered by the solder resist layer. At least a portion of the metallic layer is located in a recess in a main-surface-side central portion of the copper layer. At least a portion of the metallic layer is exposed via a corresponding opening.
摘要:
A multilayer wiring substrate includes a laminate structure in which resin insulation layers and conductor layers are alternately laminated. The resin insulation layers include first-type resin insulation layers, and second-type resin insulation layers, each of which contains an inorganic material in a larger amount and is smaller in thermal expansion coefficient as compared with first-type resin insulation layers. On a cross section of the laminate structure taken along a thickness direction thereof, the ratio of a total thickness of the second-type resin insulation layers located in an area A2 to a thickness corresponding to the area A2 is greater than the ratio of a total thickness of the second-type resin insulation layers located in an area A1 to a thickness corresponding to the area A1. The laminate structure is warped such that the laminate structure is convex toward the side where the second main face is present.
摘要:
Disclosed is a method of manufacturing a multilayer wiring substrate having a principal plane of the substrate and a rear plane thereof, having a structure such that a plurality of resin insulating layers and a plurality of conductor layers are laminated, and a plurality of chip component connecting terminals to which chip components are connectable are disposed on the principal plane of the substrate. This method has a feature including a plating layer forming process in which product plating layers which provide the plurality of chip component connecting terminals and a dummy plating layer on the surrounding of the product plating layers are formed on the surface of an exposed outermost resin insulating layer at the principal plane of the substrate. This method permits a thickness dispersion of the chip component connecting terminals to be suppressed and permits a connection reliability thereof to the chip components to be increased.
摘要:
A multilayered wiring board having a stack structure multilayered by alternately stacking a plurality of conductor layers and a plurality of resin insulation layers, wherein a solder resist is provided on at least one of a first main surface side and a second main surface side of the stack structure, a plurality of openings are formed in an outermost resin insulation layer that contacts with the solder resist, a plurality of the first main surface side connecting terminals or a plurality of the second main surface side connecting terminals being made of a copper layer as a main component and positioned in a plurality of the openings, terminal outer surfaces being positioned inwardly from an outer surface of the outermost resin insulation layer, and the solder resist extends into the plurality of openings and makes contact with an outer circumference portion of each of the terminal outer surfaces.
摘要:
To provide a multilayer wiring substrate which can prevent migration of copper between wiring traces to thereby realize a higher degree of integration, a solder resist layer 25 having a plurality of openings 35, 36 is disposed on a top surface 31 side, and IC-chip connection terminals 41 and capacitor connection terminals 42 are buried in an outermost resin insulation layer 23 in contact with the solder resist layer 25. Each of the IC-chip connection terminals 41 and the capacitor connection terminals 42 is composed of a copper layer 44 and a plating layer 46 covering the outer surface of the copper layer 44. A conductor layer 26 present at the interface between the solder resist layer 25 and the resin insulation layer 23 is composed of a copper layer 27 and a nickel plating layer 28 covering the outer surface of the copper layer 27.