Abstract:
A chip package includes a semiconductor substrate, a light-transmissive plate, a bonding layer, and a light-shielding layer. The bonding layer is located between the semiconductor substrate and the light-transmissive plate. The semiconductor substrate, the bonding layer, and the light-transmissive plate jointly define a sidewall including a first region and a second region. The first region extends from the semiconductor substrate to the light-transmissive plate, and is recessed relative to the second region. The light-shielding layer covers the sidewall and includes an extending portion, a wide portion, and a narrow portion. The extending portion is located on a surface of the semiconductor substrate facing away from the bonding layer. The wide portion is located on the first region of the sidewall. The narrow portion is located on the second region of the sidewall.
Abstract:
A chip package includes a semiconductor substrate, a supporting element, an antenna layer, and a redistribution layer. The semiconductor substrate has an inclined sidewall and a conductive pad that protrudes from the inclined sidewall. The supporting element is located on the semiconductor substrate, and has a top surface facing away from the semiconductor substrate, and has an inclined sidewall adjoining the top surface. The antenna layer is located on the top surface of the supporting element. The redistribution layer is located on the inclined sidewall of the supporting element, and is in contact with a sidewall of the conductive pad and an end of the antenna.
Abstract:
A manufacturing method of a passive component structure includes the following steps. A protection layer is formed on a substrate, and bond pads of the substrate are respectively exposed through protection layer openings. A conductive layer is formed on the bond pads and the protection layer. A patterned photoresist layer is formed on the conductive layer, and the conductive layer adjacent to the protection layer openings is exposed through photoresist layer openings. Copper bumps are respectively electroplated on the conductive layer. The photoresist layer and the conductive layer not covered by the copper bumps are removed. A passivation layer is formed on the copper bumps and the protection layer, and at least one of the copper bumps is exposed through a passivation layer opening. A diffusion barrier layer and an oxidation barrier layer are chemically plated in sequence on the copper bump.
Abstract:
A chip package includes a semiconductor substrate and a metal layer. The semiconductor substrate has an opening and a sidewall surrounding the opening, in which an upper portion of the sidewall is a concave surface. The semiconductor substrate is made of a material including silicon. The metal layer is located on the semiconductor substrate. The metal layer has plural through holes above the opening to define a MEMS (Microelectromechanical system) structure, in which the metal layer is made of a material including aluminum.
Abstract:
A chip structure includes a first substrate, a second substrate, a conductive via, and a redistribution layer. The first substrate has a first inclined sidewall. The second substrate is located on a bottom surface of the first substrate, and has an upper portion and a lower portion. The lower portion extends from the upper portion. The upper portion is between the first substrate and the lower portion. The upper portion has a second inclined sidewall, and a slope of the first inclined sidewall is substantially equal to a slope of the second inclined sidewall. The conductive via is in the lower portion. The redistribution layer extends from a top surface of the first substrate to a top surface of the lower portion of the second substrate sequentially along the first inclined sidewall and the second inclined sidewall, and is electrically connected to the conductive via.
Abstract:
This present invention provides a chip scale sensing chip package, comprising a sensing chip having a first top surface and a first bottom surface opposite to the first top surface, which comprises a sensing device near the first top surface, a plurality of conductive pads near the first top surface and adjacent to the sensing device; a plurality of through holes on the first top surface and each of the through holes exposing one of the conductive pads corresponding to with each other; a plurality of conductive structure formed on the first bottom surface; and a re-distribution layer (RDL) formed on the first bottom surface and the first through holes to respectively connect to each of the conductive pads and each of the conductive structures; a spacing layer, surrounding the sensing chip, formed on the sensing chip. The spacing layer has a second top surface, a second bottom surface and an opening through the second top surface and the second bottom surface, wherein the opening corresponds to the sensing device and the inner wall of the opening remains a desired distance d (d>0) with the sensing device; and a first adhesive layer sandwiched between the second bottom surface of the spacing layer and the first top surface of the sensing chip.
Abstract:
A chip package is provided. The chip package includes a device substrate, a first redistribution layer (RDL), a carrier base, and at least one conductive connection structure. The device substrate has at least one first through-via opening extending from the backside surface of the device substrate to the active surface of the device substrate. The first RDL is disposed on the backside surface of the device substrate and extends in the first through-via opening. The carrier base carries the device substrate, and has a first surface facing the backside surface of the device substrate and a second surface opposite the first surface. The conductive connection structure is disposed on the second surface of the carrier base and is electrically connected to the first RDL.
Abstract:
An antenna device includes a first substrate, a second substrate, an antenna layer, and a redistribution layer. The first substrate has a first surface, a second surface opposite to the first surface, and an inclined sidewall adjoining the first and second surfaces. The second substrate is below the first substrate. The first surface of the first substrate faces toward the second substrate. The antenna layer is located on the first surface of the first substrate. The redistribution layer extends from the second surface of the first substrate to the second substrate along the inclined sidewall of the first substrate, and the redistribution layer has a first section in contact with an end of the antenna layer.
Abstract:
An optical chip package is provided. The optical chip package includes a first transparent substrate, a second transparent substrate, and a spacer layer. The first and second transparent substrates each has a first surface and a second surface opposite the first surface. The first transparent substrate has a thickness that is different than that of the second transparent substrate. The second transparent substrate is disposed over the first transparent substrate, and the spacer layer is bonded between the second surface of the first transparent substrate and the first surface of the second transparent substrate. The recess region extends from the second surface of the second transparent substrate into the first transparent substrate, so that the first transparent substrate has a step-shaped sidewall. A method of forming an optical chip package is also provided.
Abstract:
A manufacturing method of a micro electro mechanical system (MEMS) device includes forming a buffer protection layer on a semiconductor structure, wherein the semiconductor structure includes a wafer, a MEMS membrane, and an isolation layer between the wafer and the MEMS membrane, and the buffer protection layer is located in a slit of the MEMS membrane and on a surface of the MEMS membrane facing away from the isolation layer; etching the wafer to form a cavity such that a portion of the isolation layer is exposed though the cavity; etching the portion of the isolation layer; and removing the buffer protection layer.