Abstract:
A ceramic resin is provided, along with its methods of formation and use. The ceramic resin may include a crosslinkable precursor, a photoinitiator, ceramic particles, and pore forming particles. The ceramic resin may be utilized to form a ceramic casting element, such as via a method that includes forming a layer of the ceramic resin; applying light onto the ceramic resin such that the photoinitiator initiates polymerization of the crosslinkable precursor to form a crosslinked polymeric matrix setting the ceramic particles and the pore forming particles; and thereafter, heating the crosslinked polymeric matrix to a first temperature to burn out the pore forming particles.
Abstract:
The present invention provides a 3D porous structure of parylene including a poly-p-xylylenes structure having a plurality of pores. The poly-p-xylylenes structure has a porosity. According to an embodiment of the present invention, the size of the porous structure is between 20 nm and 5 cm. According to an embodiment of the present invention, the porosity is between 55% and 85%. According to an embodiment of the present invention, the porous structure further includes a plurality of target molecules. According to an embodiment of the present invention, the pores of the poly-p-xylylenes structure include pore sizes of different sizes. The pore sizes are varying in a gradient. According to an embodiment of the present invention, the porous structure is formed integrally.
Abstract:
A porous layer is described. The porous layer comprises a solidified sol-gel inorganic material having a distribution of nanometric voids, wherein at least some of nanometric voids are at least partially coated internally by carbon or a hydrophobic substance containing carbon.
Abstract:
Methods of forming nanoporous materials are described herein that include forming a polymer network with a chemically removable portion. The chemically removable portion may be polycarbonate polymer that is removable on application of heat or exposure to a base, or a polyhexahydrotriazine (PHT) or polyhemiaminal (PHA) polymer that is removable on exposure to an acid. The method generally includes forming a reaction mixture comprising a formaldehyde, a solvent, a primary aromatic diamine, and a diamine having a primary amino group and a secondary amino group, the secondary amino group having a base-reactive substituent, and heating the reaction mixture to a temperature of between about 50 deg C. and about 150 deg C. to form a polymer. Removing any portion of the polymer results in formation of nanoscopic pores as polymer chains are decomposed, leaving pores in the polymer matrix.
Abstract:
Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
Abstract:
Disclosed are hollow silica particles having oil absorption ratio of at most 0.1 ml/g, porosity of hollow particles when mixed with a resin of at least 90%, and melting temperature of 130-200° C., and including a silicon compound having an organic group as a main component, and a composition including the hollow silica particles. A sheet including a base and a coating layer formed on the base and including a resin, and a method of manufacturing the same are provided. The coating layer includes a plurality of inner cavities, and components of the hollow particles are attached to the inner circumference of the inner cavities. The sheet has good transparency and insulation performance, and the inner cavities may be formed by simply melting hollow particles.
Abstract:
An optically clear, porous polymer composition, an article incorporating the composition, and methods for making and using the composition for cell culture including, for example, regulating or promoting cell function or gene expression as defined herein.
Abstract:
A method is disclosed for preparing a porous structure of ultra high molecular weight polyethylene. A heterogeneous composite of the polyethylene and a particular hydrocarbon is heated to a temperature above the melting point of the hydrocarbon but below the melting point of the polyethylene. The composite is then shaped. After such shaping the temperature is then raised to a temperature above the melting point of the polyethylene and maintained until complete fusion of the polyethylene particles occurs. Thereafter the hydrocarbon is extracted from the cooled shaped structure.
Abstract:
Shaped gel articles that are formed within a mold cavity and that retain the size and shape of the mold cavity upon removal from the mold cavity, sintered articles prepared from the shaped gel articles, and methods of making the sintered articles are provided. The shaped gel articles are formed from a casting sol that contains colloidal silica particles that are treated with a surface modification composition that includes a silane surface modification agent having a radically polymerizable group. The sintered article has a shape identical to the mold cavity (except in regions where the mold cavity was overfilled) and to the shaped gel article but reduced in size proportional to the amount of isotropic shrinkage.
Abstract:
A porous layer is described. The porous layer comprises a solidified sol-gel inorganic material having a distribution of nanometric voids, wherein at least some of nanometric voids are at least partially coated internally by carbon or a hydrophobic substance containing carbon.