Abstract:
The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
Abstract:
In one aspect, methods of silicidation and germanidation are provided. In some embodiments, methods for forming metal silicide can include forming a non-oxide interface, such as germanium or solid antimony, over exposed silicon regions of a substrate. Metal oxide is formed over the interface layer. Annealing and reducing causes metal from the metal oxide to react with the underlying silicon and form metal silicide. Additionally, metal germanide can be formed by reduction of metal oxide over germanium, whether or not any underlying silicon is also silicided. In other embodiments, nickel is deposited directly and an interface layer is not used. In another aspect, methods of depositing nickel thin films by vapor phase deposition processes are provided. In some embodiments, nickel thin films are deposited by ALD.
Abstract:
An apparatus (100) comprising:—a process tunnel (102) including a lower tunnel wall (120), an upper tunnel wall (130), and two lateral tunnel walls (108), wherein said tunnel walls together bound a process tunnel space (104) that extends in a transport direction (T);—a plurality of gas injection channels (122, 132), provided in both the lower and the upper tunnel wall, wherein the gas injection channels in the lower tunnel wall are configured to provide a lower gas bearing (124), while the gas injection channels in the upper tunnel wall are configured to provide an upper gas bearing (134), said gas bearings being configured to floatingly support and accommodate said substrate there between; and—a plurality of gas exhaust channels (110), provided in both said intend tunnel walls (108), wherein the gas exhaust channels in each lateral tunnel wall are spaced apart in the transport direction.
Abstract:
Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In some embodiments, a first precursor forms a layer on the first surface and is subsequently reacted or converted to form a metallic layer. The deposition temperature may be selected such that a selectivity of above about 50% or even about 90% is achieved.
Abstract:
Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In some embodiments, a first precursor forms a layer on the first surface and is subsequently reacted or converted to form a metallic layer. The deposition temperature may be selected such that a selectivity of above about 50% or even about 90% is achieved.
Abstract:
A substrate processing apparatus (100) comprising a process tunnel (102) including a lower tunnel wall (122), an upper tunnel wall (142), and two lateral tunnel walls (128), said tunnel walls being configured to bound a process tunnel space (104) that extends in a longitudinal transport direction (7) and that is suitable for accommodating at least one substantially planar substrate (180) oriented parallel to the upper and lower tunnel walls (122, 142), the process tunnel being divided in a lower tunnel body (120) comprising the lower tunnel wall and an upper tunnel body (140) comprising the upper tunnel wall, which tunnel bodies (120, 140) are separably joinable to each other along at least one longitudinally extending join (160), such that they are mutually movable between a closed configuration in which the tunnel walls (122, 128, 42) bound the process tunnel space (104) and an open configuration that enables lateral maintenance access to an interior of the process tunnel.
Abstract:
Metallic layers can be selectively deposited on surfaces of a substrate relative to a second surface of the substrate. In preferred embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In preferred embodiments, a first precursor forms a layer or adsorbed species on the first surface and is subsequently reacted or converted to form a metallic layer. Preferably the deposition temperature is selected such that a selectivity of above about 90% is achieved.
Abstract:
Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
Abstract:
The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.