Abstract:
An electrostatic-clamping robotic-type semiconductor wafer-holding blade designed to optimize the electrostatic clamping force and decrease the required clamping voltage. The wafer blade includes: a base; interleaved electrodes formed on the base, alternating electrodes being connected in common electrically; and preferably a layer of dielectric material such as Al.sub.2 O.sub.3 having a thickness ranging between 2 mils and 15 mils disposed over the interleaved electrodes and the base to minimize the applied voltage necessary to flatten the wafer against the blade, without dielectric breakdown. The ratio of electrode width to the distance between electrodes ranges from 3/1 to 2/1 to optimize the electrostatic clamping force exerted by the blade.
Abstract:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. The reactor includes cooperating arrays of interdigitated susceptor and wafer support fingers which collectively remove the wafer from a robot transfer blade and position the wafer with variable, controlled, close parallel spacing between the wafer and the chamber gas inlet manifold, then return the wafer to the blade. A combined RF/gas feed-through device protects against process gas leaks and applies RF energy to the gas inlet manifold without internal breakdown or deposition of the gas. The gas inlet manifold is adapted for providing uniform gas flow over the wafer. Temperature-controlled internal and external manifold surfaces suppress condensation, premature reactions and decomposition and deposition on the external surfaces. The reactor also incorporates a uniform radial pumping gas system which enables uniform reactant gas flow across the wafer and directs purge gas flow downwardly and upwardly toward the periphery of the wafer for sweeping exhaust gases radially away from the wafer to prevent deposition outside the wafer and keep the chamber clean. The reactor provides uniform processing over a wide range of pressures including very high pressures. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, and TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either alone or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the same reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.
Abstract:
A high pressure, high throughput, single wafer, semiconductor processing reactor is disclosed which is capable of thermal CVD, plasma-enhanced CVD, plasma-assisted etchback, plasma self-cleaning, and deposition topography modification by sputtering, either separately or as part of in-situ multiple step processing. A low temperature CVD process for forming a highly conformal layer of silicon dioxide is also disclosed. The process uses very high chamber pressure and low temperature, and TEOS and ozone reactants. The low temperature CVD silicon dioxide deposition step is particularly useful for planarizing underlying stepped dielectric layers, either along or in conjunction with a subsequent isotropic etch. A preferred in-situ multiple-step process for forming a planarized silicon dioxide layer uses (1) high rate silicon dioxide deposition at a low temperature and high pressure followed by (2) the deposition of the conformal silicon dioxide layer also at high pressure and low temperature, followed by (3) a high rate isotropic etch, preferably at low temperature and high pressure in the same reactor used for the two oxide deposition steps. Various combinations of the steps are disclosed for different applications, as is a preferred reactor self-cleaning step.
Abstract:
A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distributor to deliver a processing gas to the plasma chamber, a pump coupled to the plasma chamber to evacuate the chamber, a workpiece support to hold a workpiece, and an intra-chamber electrode assembly including a plurality of filaments extending laterally through the plasma chamber between a ceiling of the plasma chamber and the workpiece support. At least one bus is electrically connected to a conductor of each filament. An RF power source is configured to apply a first RF signal of a first frequency to the plurality of filaments at a first location on at least one bus, and to apply a second RF signal of different second frequency to the plurality of filaments at a different second location on the at least one bus.
Abstract:
An electron beam plasma reactor includes a plasma chamber having a side wall, an upper electrode, a workpiece support to hold a workpiece facing the upper electrode with the workpiece on the support having a clear view of the upper electrode, a first RF power source coupled to said upper electrode, a gas supply, a vacuum pump coupled to the chamber to evacuate the chamber, and a controller. The controller is configured to operate the first RF power source to apply an RF power to upper electrode, and to operate the gas distributor and vacuum pump, so as to create a plasma in an upper portion of the chamber that generates an electron beam from the upper electrode toward the workpiece and a lower electron-temperature plasma in a lower portion of the chamber including the workpiece.
Abstract:
Embodiments of the invention relate to compositions of metal oxyfluoride-comprising glazes or metal fluoride-comprising glazes, glass ceramics, and combinations thereof which are useful as plasma-resistant solid substrates or plasma resistant protective coatings over other substrates. Also described are methods of fabricating various structures which incorporate such compositions, including solid substrates and coatings over the surface of a substrate which has a melting point which is higher than about 1600° C., such as aluminum oxide, aluminum nitride, quartz, silicon carbide, silicon nitride.
Abstract:
Embodiments of the present invention generally provide an apparatus and methods for etching photomasks using charged beam plasma. In one embodiment, an apparatus for performing a charged beam plasma process on a photomask includes a processing chamber having a chamber bottom, a chamber ceiling and chamber sidewalls defining an interior volume, a substrate support pedestal disposed in the interior volume, a charged beam generation system disposed adjacent to the chamber sidewall, and a RF bias electrode disposed in the substrate support.
Abstract:
A method of creating a plasma-resistant thermal oxide coating on a surface of an article, where the article is comprised of a metal or metal alloy which is typically selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof. The oxide coating is formed using a time-temperature profile which includes an initial rapid heating rage, followed by a gradual decrease in heating rate, to produce an oxide coating structure which is columnar in nature. The grain size of the crystals which make up the oxide coating is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate.
Abstract:
Methods for processing substrates in twin chamber processing systems having first and second process chambers and shared processing resources are provided herein. In some embodiments, a method may include providing a substrate to the first process chamber of the twin chamber processing system, wherein the first process chamber has a first processing volume that is independent from a second processing volume of the second process chamber; providing one or more processing resources from the shared processing resources to only the first processing volume of the first process chamber; and performing a process on the substrate in the first process chamber.
Abstract:
A coaxial VHF power coupler includes conductive element inside a hollow cylindrical outer conductor of the power coupler and surrounding an axial section of a hollow cylindrical inner conductor of the power coupler. Respective plural motor drives contacting the hollow cylindrical outer conductor are connected to respective locations of the movable conductive element.