Abstract:
A flex-rigid wiring board including an insulative substrate having a wiring layer which is formed on the insulative substrate and includes a conductor, a flexible wiring board positioned beside the insulative substrate and having a wiring layer, the wiring layer of the flexible wiring board including a conductor and being contained inside the flexible wiring board, and a first insulation layer positioned on the insulative substrate and the flexible wiring board such that a portion of the flexible wiring board is left exposed from the first insulation layer. The first insulation layer has a wiring layer which is formed on the first insulation layer and includes a conductor. The wiring layer of the first insulation layer has a thickness which is formed thicker than a thickness of the wiring layer of the flexible wiring board and a thickness of the wiring layer of the insulative substrate.
Abstract:
A flex-rigid wiring board having a flexible wiring board, a first insulation layer positioned adjacent to a side of the flexible board and having a first hole which penetrates through the first layer, a second insulation layer laminated over the flexible board and the first layer and having a second hole which penetrates through the second layer, the second hole of the second layer being formed along the axis of the first hole of the first layer, a first conductor structure formed in the first hole and including a filled conductor formed by filling plating in the first hole, and a second conductor structure formed in the second hole and including a filled conductor formed by filling plating in the second hole, the second conductor structure being formed along the axis of the first conductor structure and electrically connected to the first conductor structure.
Abstract:
A flex-rigid wiring board including a flexible wiring board, a first insulation layer positioned to a side of the flexible board and having a first hole through the first layer, a second insulation layer over the first layer and an end portion of the flexible board and with a second hole through the second layer along the axis of the first hole, a third insulation layer over the first layer and the end portion of the flexible board on the opposite side of the second layer and with a third hole through the third layer along the axis of the first hole, a first structure having a filled conductor in the first hole, a second structure having a filled conductor in the second hole along the axis of the first structure, and a third structure having a filled conductor in the third hole along the axis of the first structure.
Abstract:
A multilayer printed wiring board including insulating layers and conductor layers being stacked alternately on each other. The conductor layers are electrically connected to each other through viaholes formed in the insulating layers. Each of the viaholes is formed to bulge in a direction generally orthogonal to the direction of thickness of the insulating layer. The multilayer printed wiring board is to have electronic components such as a capacitor, IC and the like mounted on the surface layer thereof.
Abstract:
A multilayer printed circuit board, wherein, on a resin-insulating layer that houses a semiconductor element, another resin-insulating layer and a conductor circuit are formed with conductor circuits electrically connected through a via hole, wherein a electromagnetic shielding layer is formed on a resin-insulating layer surrounding a concave portion for housing a semiconductor element or on the inner wall surface of the concave portion, and the semiconductor element is embedded in the concave portion.
Abstract:
A multilayer printed wiring board comprises a plurality of insulating layers which is about 100 μm or less in thickness and a plurality of conductor circuits formed on the insulating layers. Each of a plurality of viaholes electrically connecting conductor circuits on the insulating layers to each other is formed tapered inwardly from the surface of the insulating layer and the viaholes are disposed opposite to each other to form a multistage stacked vias.
Abstract:
A multilayer printed circuit board, wherein, on a resin-insulating layer that houses a semiconductor element, another resin-insulating layer and a conductor circuit are formed with conductor circuits electrically connected through a via hole, wherein a electromagnetic shielding layer is formed on a resin-insulating layer surrounding a concave portion for housing a semiconductor element or on the inner wall surface of the concave portion, and the semiconductor element is embedded in the concave portion.
Abstract:
A multilayer printed wiring board comprises insulating layers and conductor layers being stacked alternately on each other. The conductor layers are electrically connected to each other through viaholes formed in the insulating layers. Each of the viaholes is formed to bulge in a direction generally orthogonal to the direction of thickness of the insulating layer. The multilayer printed wiring board is to have electronic components such as a capacitor, IC and the like mounted on the surface layer thereof.
Abstract:
A flex-rigid wiring board including a rigid wiring board including a rigid base material and having a conductive layer over the rigid base material, and a flexible wiring board including a flexible base material and having a conductive layer over the flexible base material. The conductive layer of the flexible wiring board is electrically connected to the conductive layer of the rigid wiring board. The flexible wiring board has a cut portion and one or more folding portions formed by using the cut portion and folding one or more portions of the flexible wiring board such that the flexible wiring board is extended in length.
Abstract:
A wiring board includes an insulating board, wiring sub boards, and insulating layers having via holes in which conductors are formed by plating. The insulating board and the wiring sub boards are horizontally laid out. The insulating layers are laid out to respectively cover a first boundary portion between the insulating board and each of the wiring sub boards, and a second boundary portion between the wiring sub boards, and continuously extend from the insulating board to wiring sub boards. Resins which constitute the insulating layers are filled in the first boundary portion and the second boundary portion. The conductors are electrically connected to the wiring layers.